MPB_2024v15n2

Molecular Plant Breeding 2024, Vol.15, No.2, 63-69 http://genbreedpublisher.com/index.php/mpb 68 Ma Y., Zhang L., and Huang X., 2014, Genome modification by CRISPR/Cas9, FEBS J, 281(23): 5186-5193. https://doi.org/10.1111/febs.13110 PMid:25315507 Martin C., and Smith A.M., 1995, Starch biosynthesis, Plant Cell, 7(7): 971-985. https://doi.org/10.1105/tpc.7.7.971 PMid:7640529 PMCid:PMC160895 Nica A.C., and Dermitzakis E.T., 2013, Expression quantitative trait loci: present and future, Philos. Trans. R Soc Lond B Biol. Sci., 368(1620): 20120362. https://doi.org/10.1098/rstb.2012.0362 PMid:23650636 PMCid:PMC3682727 Ohdan T., Francisco Jr P.B., Sawada T., Hirose T., Terao T., Satoh H., and Nakamura Y., 2005, Expression profiling of genes involved in starch synthesis in sink and source organs of rice, J. Exp. Bot., 56(422): 3229-3244. https://doi.org/10.1093/jxb/eri292 PMid:16275672 Orzechowski S., 2008, Starch metabolism in leaves, Acta Biochim. Pol., 55: 435-445. https://doi.org/10.18388/abp.2008_3049 PMid:18787712 Otun S., Escrich A., Achilonu I., Rauwane M., Lerma-Escalera J.A., Morones-Ramírez J.R., and Rios-Solis L., 2023, The future of cassava in the era of biotechnology in Southern Africa, Crit. Rev. Biotechnol., 43(4): 594-612. https://doi.org/10.1080/07388551.2022.2048791 PMid:35369831 Phumichai C., Aiemnaka P., Nathaisong P., Hunsawattanakul S., Fungfoo P., Rojanaridpiched C., Vichukit V., Kongsil P., Kittipadakul P., Wannarat W., Chunwongse J., Tongyoo P., Kijkhunasatian C., Chotineeranat S., Piyachomkwan K., Wolfe M.D., Jannink J.L., and Sorrells M.E., 2022, Genome-wide association mapping and genomic prediction of yield-related traits and starch pasting properties in cassava, Theor. Appl. Genet., 135(1): 145-171. https://doi.org/10.1007/s00122-021-03956-2 Prasannakumari V., Nair A.G.H., and Mohan C., 2021, Identification of quantitative trait loci (QTLs) conferring dry matter content and starch content in cassava (Manihot esculenta Crantz), Am. J. BioSci., 9(1): 1-9. https://doi.org/10.11648/j.ajbio.20210901.11 Rössner C., Lotz D., and Becker A., 2022, VIGS goes viral: How VIGS transforms our understanding of plant science, Annu. Rev. Plant Biol., 73: 703-728. https://doi.org/10.1146/annurev-arplant-102820-020542 PMid:35138878 Saithong T., Rongsirikul O., Kalapanulak S., Chiewchankaset P., Siriwat W., Netrphan S., Suksangpanomrung M., Meechai A., and Cheevadhanarak S., 2013, Starch biosynthesis in cassava: a genome-based pathway reconstruction and its exploitation in data integration, BMC Syst. Biol., 7: 75. https://doi.org/10.1186/1752-0509-7-75 PMid:23938102 PMCid:PMC3847483 Saripalli G., and Gupta P.K., 2015, AGPase: its role in crop productivity with emphasis on heat tolerance in cereals, Theor. Appl. Genet., 128: 1893-1916. https://doi.org/10.1007/s00122-015-2565-2 PMid:26152573 Senthil-Kumar M., and Mysore K.S., 2011, Caveat of RNAi in plants: the off-target effect, Methods Mol. Biol., 2744: 13-25. https://doi.org/10.1007/978-1-61779-123-9_2 Stitt M., and Zeeman S.C., 2012, Starch turnover: pathways, regulation and role in growth, Curr. Opin. Plant Biol., 15: 282-292. https://doi.org/10.1016/j.pbi.2012.03.016 PMid:22541711 Tadele Z., 2019, Orphan crops: their importance and the urgency of improvement, Planta, 250(3): 677-694. https://doi.org/10.1007/s00425-019-03210-6 PMid:31190115 Tappiban P., Smith D., Triwitayakorn K., and Bao J., 2019, Recent understanding of starch biosynthesis in cassava for quality improvement: a review, Trends in Food Science & Technology, 83: 167-180. https://doi.org/10.1016/j.tifs.2018.11.019 Tetlow I.J., and Bertoft E., 2020, A review of starch biosynthesis in relation to the building block-backbone model, Int. J. Mol. Sci., 21(19): 7011. https://doi.org/10.3390/ijms21197011 PMid:32977627 PMCid:PMC7582286 Tetlow I.J., and Emes M.J., 2014, A review of starch-branching enzymes and their role in amylopectin biosynthesis, IUBMB Life, 66(8): 546-558. https://doi.org/10.1002/iub.1297 PMid:25196474 Thanyasiriwa T., Sraphet S., Whankaew S., Boonseng O., Bao J., Lightfoot D.A., Tangphatsornruang S., and Triwitayakorn K., 2014, Quantitative trait loci and candidate genes associated with starch pasting viscosity characteristics in cassava (Manihot esculenta Crantz), Plant Biol. (Stuttg), 16(1): 197-207. https://doi.org/10.1111/plb.12022

RkJQdWJsaXNoZXIy MjQ4ODYzMg==