MPB_2024v15n2

Molecular Plant Breeding 2024, Vol.15, No.2, 52-62 http://genbreedpublisher.com/index.php/mpb 62 Li B.L., and Marylyn D.R., 2021, From GWAS to gene: Transcriptome-wide association studies and other methods to functionally understand GWAS discoveries, Front. Genet., 12: 713230. https://doi.org/10.3389/fgene.2021.713230 Mores A., Borrelli G.M., Laidò G., Petruzzino G., Pecchioni N., Amoroso L.G.M., Desiderio F., Mazzucotelli E., Mastrangelo A.M., and Marone D., 2021, Genomic approaches to identify molecular bases of crop resistance to diseases and to develop future breeding strategies, Int. J. Mol. Sci., 22(11): 5423. https://doi.org/10.3390/ijms22115423 PMid:34063853 PMCid:PMC8196592 Nardana E., Shen G.X., and Zhang H., 2022, Genetic manipulation for abiotic stress resistance traits in crops, Front. Plant Sci., 21: 2022. Pavan S., Delvento C., Ricciardi L., Lotti C., Ciani E., and D'Agostino N., 2020, Recommendations for choosing the genotyping method and best practices for quality control in crop genome-wide association studies, Front. Genet., 11: 447. https://doi.org/10.3389/fgene.2020.00447 PMid:32587600 PMCid:PMC7299185 Rafael D.C., Qiu Y.J., Ou S.J., Matthew B.H., and Candice N.H., 2021, How the pan-genome is changing crop genomics and improvement, Genome Biology, 22(1): 3. Thomas D.H., and Hückelhoven R., 2018, Biotic and abiotic stress responses in crop plants, Agronomy, 8(11): 267. https://doi.org/10.3390/agronomy8110267 Wang L., and Chang C., 2024, Stomatal improvement for crop stress resistance, Journal of Experimental Botany, 75(7): 1823-1833. https://doi.org/10.1093/jxb/erad477 PMid:38006251 Wang P.P., Zhao F.H., Zheng T., Liu Z.J., Ji X.H., Zhang Z.C., Pervaiz T., Shangguan L.F., and Fang J.G., 2023, Whole-genome re-sequencing, diversity analysis, and stress-resistance analysis of 77 grape rootstock genotypes, Front. Plant Sci., 14: 1102695. https://doi.org/10.3389/fpls.2023.1102695 PMid:36844076 PMCid:PMC9947647 Xu P., Guo Q., and Meng, S., 2021, Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum, BMC Genomics, 22(1): 26. https://doi.org/10.1186/s12864-020-07321-3 PMid:33407102 PMCid:PMC7789578 Xu P., Guo Q., Meng S., Zhang X.G., Xu Z.Z., Guo W.Z., and Shen X.L., 2021, Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum, BMC Genomics, 26: 21. https://doi.org/10.21203/rs.3.rs-66236/v1

RkJQdWJsaXNoZXIy MjQ4ODYzMg==