MPB_2024v15n1

Molecular Plant Breeding 2024, Vol.15, No.1, 34-41 http://genbreedpublisher.com/index.php/mpb 40 Doran J.W., 1980, Microbial changes associated with residue management with reduced tillage, Soil Science Society of America Journal, 44(3): 518-524. https://doi.org/10.2136/sssaj1980.03615995004400030016x Ferguson W., and Ferguson W.S., 1957, Note on the effect of stubble and straw residue on the availability of nitrogen, Canadian Journal of Soil Science, 37(2): 145-146. https://doi.org/10.4141/cjss57-022 Greer L., and Dole J.M., 2003, Aluminum foil, aluminum-painted, plastic, and degradable mulches increase yields and decrease insectvectored viral diseases of vegetables, HortTechnology Horttech, 13(2): 276-284. https://doi.org/10.21273/HORTTECH.13.2.0276 Hayes D.G., Dharmalingam S., Wadsworth L.C., Leonas K.K., Miles C.A., and Inglis D.A., 2012, Biodegradable agricultural mulches derived from biopolymers, Degradable Polymers and Materials: Principles and Practice (2nd Edition), pp.201-203. https://doi.org/10.1021/bk-2012-1114.ch013 Heinze T., 2016, Cellulose: Structure and Properties, In: Rojas O.J. (ed.), Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials, advances in polymer science, Springer, Cham, pp.1-52. https://doi.org/10.1007/12_2015_319 Hill D.E., Hankin L., and Stephens G.R., 1982, Mulches: their effect on fruit set, timing and yields of vegetables, Bulletin, Connecticut Agricultural Experiment Station, New Haven, (805): 15. Kasirajan S., and Ngouajio M., 2012, Polyethylene and biodegradable mulches for agricultural applications: A review, Agronomy for Sustainable Development, 32(2): 501-529. https://doi.org/10.1007/s13593-011-0068-3 Kaur B., Ariffin F., Bhat R., and Karim A.A., 2012, Progress in starch modification in the last decade, Food Hydrocolloids, 26(2): 398-404. https://doi.org/10.1016/j.foodhyd.2011.02.016 Kijchavengkul T., Auras R., Rubino M., Ngouajio M., and Fernandez R.T., 2008, Assessment of aliphatic-aromatic copolyester biodegradable mulch films, Part I: Field study, Chemosphere, 71(5): 942-953. https://doi.org/10.1016/j.chemosphere.2007.10.074 PMid:18262221 Kunioka M., Ninomiya F., and Funabashi M., 2009, Biodegradation of poly (butylene succinate) powder in a controlled compost at 58°C evaluated by naturally-occurring carbon 14 amounts in evolved CO2 based on the ISO 14855-2 method, Int. J. Mol. Sci., 10(10): 4267-4283. https://doi.org/10.3390/ijms10104267 PMid:20057944 PMCid:PMC2790107 Kyrikou I., and Briassoulis D., 2007, Biodegradation of Agricultural Plastic Films. A critical review, Journal of Polymers and the Environment, 15(2): 125-150. https://doi.org/10.1007/s10924-007-0053-8 Li M.X., Ji D.C., Wang Z.Y., Xu Y.D., Jia Z.J., Li S.T., and Ding F., 2022, Effects of biodegradable mulch on soil microbial abundance, activity and community structure, Journal of Agricultural and Environmental Sciences, 41(8): 1758-1767. Liu M., Huang Z.B., and Yang Y.J., 2008, Research progress and development trend of biodegradable mulch film, Chinese Journal of Agronomy, (9): 439-443. Liu X., 2023, Effect of biodegradable mulch on potato yield and soil environment, China Agricultural Extension, 39(5): 72-76. Lu L., Han F., Liu Z.T., Qian J.J., Yan Y., and Sun Y.J., 2023, Effects of two new biodegradable mulches on tomato growth and soil microbial and enzyme activities, Shandong Agricultural Science, 55(5): 101-106. Mahboobeh E., Yunus W.M.Z.W., Hussein Z., Ahmad M., and Ibrahim N.A., 2010, Flexibility improvement of poly (lactic acid) by stearate-modified layered double hydroxide, Journal of Applied Polymer Science, 118(2): 1077-1083. https://doi.org/10.1002/app.32461 Mooers C.A., Washko J.B., and Young J.B., 1948, Effects of wheat straw, lespedeza sericea hay, and farmyard manure, as soil mulches, on the conservation of moisture and the production of nitrates, Soil Science, 66: 307-316. https://doi.org/10.1097/00010694-194810000-00007 Muller J., González-Martínez C., and Chiralt A., 2017, Poly (lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression molding, European Polymer Journal, 95: 56-70. https://doi.org/10.1016/j.eurpolymj.2017.07.019 Noda I., Satkowski M.M., Dowrey A.E., and Marcott C., 2004, Polymer alloys of nodax copolymers and poly (lactic acid), Macromolecular Bioscience, 4(3): 269-275. https://doi.org/10.1002/mabi.200300093 PMid:15468217 Praveen K.G., Shreeya S.R., Deepali V.P., Priyadharsini V., Vidhya S., Chandrananthi C., and Keerthana G., 2019, An update on overview of cellulose, its structure and applications, In: Pascual Alejandro Rodríguez and E. Eugenio Martín María (eds.), Cellulose, IntechOpen, pp.1-20. Qin C.R., Wang S.F., Song H.N., and Zhan H.Y., 2002, Study on the production of fully degradable agricultural landfilm from sugarcane bagasse, Modern Chemical Industry, (11): 24-28. Qiu S., Zhou Y.K., Waterhouse G.I.N., Gong R.Z., Xie J.Z., Zhang K., and Xu J., 2021, Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films, Food Chemistry, 334: 127487. https://doi.org/10.1016/j.foodchem.2020.127487

RkJQdWJsaXNoZXIy MjQ4ODYzMg==