MPB_2024v15n1

Molecular Plant Breeding 2024, Vol.15, No.1, 27-33 http://genbreedpublisher.com/index.php/mpb 27 Brief History of Plant Breeding Open Access Breeding 5.0: AI-Driven Revolution in Designed Plant Breeding JimFang Hainan Institute of Tropical Agricultural Resources, Sanya, 572025, Hainan, China Corresponding email: james.xj.fang@qq.com Molecular Plant Breeding, 2024, Vol.15, No.1 doi: 10.5376/mpb.2024.15.0004 Received: 15 Dec., 2023 Accepted: 22 Jan., 2024 Published: 15 Feb., 2024 Copyright © 2024 Fang, This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Preferred citation for this article: Fang J., 2024, Breeding 5.0: AI-driven revolution in designed plant breeding, Molecular Plant Breeding, 15(1): 27-33 (doi: 10.5376/mpb.2024.15.0004) Abstract The future of plant breeding is advancing towards greater precision, efficiency, and sustainability. Breeding 5.0 represents the forefront of future plant breeding, revolutionizing the field through innovative technologies and methods such as genome editing, artificial intelligence, and big data analysis, enabling integration and editing of genetic information. This will bring revolutionary changes to global agriculture, enhancing food productivity, improving food quality, and fostering resilience to climate change. Looking ahead, precise agriculture and personalized breeding will be crucial directions for development. The development of techniques like fluorescence-based hybridization and microscopic imaging will propel breeding advancements, while strategies focusing on environmental adaptability and climate change will help address evolving environmental challenges. The frontier technologies and methods of Breeding 5.0, the transformation of global food systems for human food security, and the significance of scientific collaboration and interdisciplinary research will shape the future direction and progress of plant breeding. Keywords Plant Breeding 5.0; Genome editing; Artificial intelligence; Big data analysis; Sustainable development 1 Introduction With the rise in global population and the emergence of global challenges such as climate change, agriculture is facing unprecedented pressure. In order to meet the growing demand for food, enhance crop adaptability, and improve agronomic traits, Plant breeding, as a key agricultural technology, has become increasingly important. Over the past few decades, plant breeding has made tremendous progress, evolving from traditional trait performance selection to the precision revolution of genotype selection (Breeding 3.0), and further advancing to the breeding revolution of genetic information integration and editing (Breeding 4.0). Breeding 4.0 signifies the widespread application of genetic information integration and editing technologies, bringing new possibilities and opportunities to breeding efforts (Wallace et al., 2018). Breeding 5.0, on the other hand, involves the integration of advanced technologies such as genomic selection, high-throughput phenotypic analysis, and data analysis, making breeding strategies more precise and efficient (Kuriakose et al., 2020). In the era of Breeding 4.0, by integrating genetic and genomic information, we can precisely select and edit plant genotypes to achieve more efficient and faster breeding goals. The emergence of genome editing technologies, such as the CRISPR-Cas9 system, allows us to directly intervene in the plant genome, enabling targeted gene editing and functional gene regulation. With the rapid development of artificial intelligence and big data, unprecedented opportunities have emerged for plant breeding. The application of machine learning and data analysis enables us to better understand and predict the associations between plant traits and the genome, accelerating the breeding process and optimizing breeding strategies. Breeding 5.0 is characterized by the use of advanced technologies and methods in breeding, focusing on precision, efficiency, and exploring new breeding strategies and genetic potentials. Looking ahead, plant breeding will continue to face numerous challenges such as ethical and moral considerations, sustainable agriculture, and social responsibility. However, as the future trend, Breeding 5.0 will continually drive innovation and progress in plant breeding, making greater contributions to global agricultural sustainability.

RkJQdWJsaXNoZXIy MjQ4ODYzMg==