MPB_2024v15n1

Molecular Plant Breeding 2024, Vol.15, No.1, 8-14 http://genbreedpublisher.com/index.php/mpb 13 References Begum H., Spindel J.E., Lalusin A., Borromeo T., Gregorio G., Hernandez J., Virk P., Collard B., and McCouch S.R., 2015, Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa), PLoS One, 10(3): e0119873. https://doi.org/10.1371/journal.pone.0119873 PMid:25785447 PMCid:PMC4364887 Causse M.A., Fulton T.M., Cho Y.G., Ahn S.N., Chunwongse J., Wu K., Xiao J., Yu Z., Ronald P.C., and Harrington S.E., 1994, Saturated molecular map of the rice genome based on an interspecific backcross population, Genetics, 138(4): 1251-1274. https://doi.org/10.1093/genetics/138.4.1251 PMid:7896104 PMCid:PMC1206261 Duangjit J., Causse M., and Sauvage C., 2016, Efficiency of genomic selection for tomato fruit quality, Molecular Breeding, 36: 1-6. https://doi.org/10.1007/s11032-016-0453-3 Fang J., 2023, Brief history of plant breeding (IV): breeding 2.0, scientific-driven approach of variation populations and phenotype selection, Tree Genetics and Molecular Breeding, 13(1): 1-5. https://doi.org/10.5376/tgmb.2023.13.0001 Fang X.J., Wu W.R., and Tang J.L., 2001, Crop DNA marker-assisted breeding, Science Press, pp.1-84. Farfan I.D.B., de la Fuente G.N., Murray S.C., Isakeit T., Huang P.C., Warburton M., Williams P., Windham G.L., and Kolomiets M., 2015, Genome wide association study for drought, aflatoxin resistance, and important agronomic traits of maize hybrids in the sub-tropics, PLoS One, 10(2): e0117737. https://doi.org/10.1371/journal.pone.0117737 PMid:25714370 PMCid:PMC4340625 Gois I.B., Borém A., Cristofani-Yaly M., de Resende M.D.V., Azevedo C.F., Bastiane M., Novelli V.M., and Machado M.A., 2016, Genome wide selection in Citrus breeding, Genetics and Molecular Research, 15 (4): gmr15048863. https://doi.org/10.4238/gmr15048863 PMid:27813590 Haile J.K., N’Diaye A., Clarke F., Clarke J., Rutkoski J., Bassi F.M., Pozniak C.J., 2018, Genomic selection for grain yield and quality traits in durum wheat, Mol. Breeding, 38: 75. https://doi.org/10.1007/s11032-018-0818-x Hospital F., and Charcosset A., 1997, Marker-assisted introgression of quantitative trait loci, Genetics, 147(3): 1469-1485. https://doi.org/10.1093/genetics/147.3.1469 PMid:9383086 PMCid:PMC1208267 International Rice Genome Sequencing Project, and Sasaki T., 2005, The map-based sequence of the rice genome, Nature, 436(7052): 793-800. https://doi.org/10.1038/nature03895 PMid:16100779 Lander E.S., and Schork N.J., 2006, Genetic dissection of complex traits, Focus, 265(3): 2037-2458. https://doi.org/10.1126/science.8091226 PMid:8091226 Liu J., He Z., Rasheed A., Wen W., Yan J., Zhang P., Wan Y., Zhang Y., Xie C., and Xia X., 2017, Genome-wide association mapping of black point reaction in common wheat (Triticum aestivumL.), BMC Plant Biol., 17(1): 1-12. https://doi.org/10.1186/s12870-017-1167-3 PMid:29169344 PMCid:PMC5701291 Lu H., Redus M.A., Coburn J.R., Rutger J.N., McCouch S.R., and Tai T.H., 2005, Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis, Crop Science, 45(1): 66-76. https://doi.org/10.2135/cropsci2005.0066 Ming R., Wang Y., Draye X., Moore P., Irvine J., and Paterson A., 2002, Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane, Theoretical and Applied Genetics, 105: 332-345. https://doi.org/10.1007/s00122-001-0861-5 PMid:12582536 Paterson A.H., 2019, Molecular dissection of complex traits, CRC Press. https://doi.org/10.1201/9780429117770 Pillen K., Zacharias A., and Léon J., 2003, Advanced backcross QTL analysis in barley (Hordeum vulgare L.), Theoretical and Applied genetics, 107: 340-352. https://doi.org/10.1007/s00122-003-1253-9 PMid:12677407 Resende Jr M.F.R., Munoz P., Resende M.D., Garrick D.J., Fernando R.L., Davis J.M., Jokela E.J., Martin T.A., Peter G.F., and Kirst M., 2012, Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.), Genetics, 190(4): 1503-1510. https://doi.org/10.1534/genetics.111.137026 PMid:22271763 PMCid:PMC3316659

RkJQdWJsaXNoZXIy MjQ4ODYzMg==