Page 21 - 2012no29

Basic HTML Version

分子植物育种
(
网络版
), 2012
,
10
,
1206
-
1213
Fenzi Zhiwu Yuzhong (Online), 2012, Vol.10, 1206
-
1213
http://mpb.5th.sophiapublisher.com
1212
多种除草剂具有抗性的作物,将是今后发展的主要
方向。
(2)
具有包括抗除草剂和抗虫等特性在内多种
复合性状转基因棉花的培育。目前应用最多的主要
是抗除草基因与抗虫基因的组合,如草甘膦抗性的
epsps
基因或者溴苯腈抗性的
Bxn
与苏云金芽孢杆
菌的
crylAc
基因同时导入棉花,获得同时抗虫和抗
除草剂的材料。具有多种抗性的转基因棉花培育也
是转基因育种的一个方向。
2010
年有
11
个国家种
植了具有复合性状的转基因作物;
2011
年,美国种
植的棉花中有
95%
以上是抗草甘膦和抗虫棉。多种
抗除草剂基因的复合可以提高除草效率,有效的保
护除草剂的使用寿命,延缓杂草抗性的产生;抗除
草剂基因、抗虫基因及抗逆基因的组合则可以减少
生产成本,提高工效。
(3)
在棉花杂种优势中的应用。
棉花杂种优势的利用方式主要是品种间杂交。将抗
除草剂基因导入棉花父本中,通过杂交获得抗除草
剂的
F1
杂交种,这种杂交种在苗期通过喷施除草
剂即可辨别假杂种。这种方式既可提高种子纯度,
也可减少工作量。抗除草剂基因在三系育种中的应
用在其它作物中已有了相当的研究。
作者贡献
郭书巧和倪万潮是论文的构思者及负责人;郭书巧,束
红梅完成资料的搜集、整理、初稿的写作;巩元勇参与论文
的校对和定稿工作。全体作者都阅读并同意最终的文本。
致谢
本研究由国家自然科学基金
(
项目编号
: 31101452)
、江
苏省自然科学基金
(
项目编号
: BK2010465)
和转基因重大专
(
项目编号
: 2011ZX08005-001)
共同资助。
参考文献
Ahuja M., and Punekar N.S., 2008, Phosphinothricin resistance
in
Aspergillus niger
and its utility as a selectable
transform-ation marker, Fungal Genet. Biol., 45(7): 1103-1110
http://dx.doi.org/10.1016/j.fgb.2008.04.002 PMid:18479949
Barley C, Trolinder N, Ray C, Morgan M., Quisenberry J.E.,
and Ow D.W., 1992, Engineering 2,4
-
D resistance into
cotton, Theor. Appl. Genet., 83(5): 645-649
Cerdeira A.L., Gazziero D.L.P., Duke S.O., Matallo M.B., and
Spadotto C.A., 2007, Review of potential environmental
impacts of transgenic glyphosate-resistant soybean in
Brazil, J. Environ. Sci. Health B., 42(5): 539-549
http://dx.doi.org/10.1080/03601230701391542 PMid:1756
2462
D'Halluin K., De Block M., Denecke J., Janssens J., Leemans J.,
Reynaerts A., and Botterman J., 1992, The
bar
gene as
selectable and screenable marker in plant engineering,
Methods Enzymol., 216: 415-426 http://dx.doi.org/10.101
6/0076-6879(92)16038-L
Dill G.M., Cajacob C.A., and Padgette S.R., 2008,
Glyphosate-resistant crops: adoption, use and future
considerations, Pest Manag. Sci., 64(4): 326-331
http://dx.doi.org/10.1002/ps.1501 PMid:18078304
Duke S.O., 2010, Glyphosate degradation in glyphosate-resistant and
-susceptible crops and weeds, J. Agric. Food Chem., 59:
5835-5841 http://dx.doi.org/10.1021/jf102704x PMid:20919737
Duke S.Q., and Cerdeira A.L., 2010, Chapter 3: transgenic
crops for herbicide resistance, In: Kole C., Michler C.,
Abbott A.G., Hall T.C.(eds.), Transgenic Crop Plants:
Volume 1: Principles and Development, Verlag Berlin
Heidelberg, New York, USA, pp.133-166
Green J.M., 2009, Evolution of glyphosate-resistant crop
technology, Weed Science, 57: 108-117 http://dx.doi.org/-
10.1614/WS-08-030.1
Green J.M., and Owen M.D.K., 2011, Herbicide-resistant crops:
utilities and limitations for herbicide-resistant weed
management, J. Agric. Food Chem., 59(11): 5819-5829
http://dx.doi.org/10.1021/jf101286h PMid:20586458 PMC-
id:3105486
Grula J.W., Hudspeth R.L., Hobbs S.L., and Anderson D.M.,
1995, Organization, inheritance and expression of
acetohydroxyacid synthase genes in the cotton allotetraploid
Gossypium hirsutum, Plant Mol. Biol., 28(5): 837-846
http://dx.doi.org/10.1007/BF00042069 PMid:7640356
Guo S.Q., Zheng Q., and Ni W.C., 2009, PQR gene conferring
paraquat resistance to the heterologous host
Escherichia coli
,
Shengwu Jishu Tongbao (Biotechnology Bulletin), 7: 98-103
(
郭书巧
,
郑卿
,
倪万潮
, 2009, PQR
转运体基因赋予大肠杆
BL21
百草枯抗性
,
生物技术通报
, 7: 98-103)
Hoiseth S.K., and Stocker B.A., 1985, Genes
aroA
and
serC
of
Salmonella typhimurium
constitute an operon, J. Bacteriol.,
163(1):355-361 PMid:2989248 PMCid:219121
James C., 2011, Brief 43: Global Status of Commercialized
Biotech/GM Crops: 2011, ISAAA Brief No.43, ISAAA:
Ithaca, NY, pp.1-28
John M.E., and Stewart J.McD., 2010, Genetic engineering
applications in crop improvement, Physiology of Cotton,
394-403
Keller G., Spatola L., McCabe D., Martinell B., Swain W., John
M.E., 1997, Transgenic cotton resistant to herbicide
bialaphos, Transgenic Research, 6: 385-392 http://dx.doi.-
org/10.1023/A:1018483300902
Lang Z.F., Shen J.J., Cai S., Zhang J., He J., and Li S.P., 2011,
Expression, characterization, and site-directed mutation of