张强等
, 2011,
玳玳花咖啡酸甲基转移酶基因的电子克隆及序列分析
,
分子植物育种
Vol.9 No.14 (doi: 10.5376/mpb.cn.2011.09.0014)
1106
TGGGTTCAACCAGTTC
-
3'
和
COMTW3
:
5'
-
TCCA
GTAGAACAAAAGACTCAAGC
-
3'
,以玳玳花花瓣
的
cDNA
为模板,进行
RT-PCR
验证。获得的
PCR
产
物用
AXYGEN
公司的
DNA
凝胶回收试剂盒回收,克
隆至
pGEM-T easy
载体,转化大肠杆菌,菌落
PCR
筛选阳性克隆送上海博尚生物公司测序。
3.5
序列分析
用
DNAStar
软件
EditSeq
程序对玳玳花
CaCOMT
进行氨基酸组成、分子质量、等电点分析,并通过
NCBI
的
CDD (Conserved Domain Database)
数据库
(
网
址为
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.
cgi)
预测
CaCOMT
蛋白的保守结构域;利用
DNAM-
AN6.0
和
MEGA4.0
软件对
CaCOMT
进行序列分析并
与数据库中植物
OMTs
进行同源序列比对、聚类分
析,
NJ
法构建系统进化树。
作者贡献
张强是本研究的实验设计和实验研究的执行人,并和
张晓伟完成数据分析,论文初稿的写作;李艳敏和王慧娟及
王利民参与实验设计,试验结果分析;孟月娥是项目的构思
者及负责人,指导实验设计,数据分析,论文写作与修改。
全体作者都阅读并同意最终的文本。
致谢
本研究由河南省基础与前沿技术研究计划项目
(082300430100)
资助。
参考文献
Dixon R.A., Chen F., Guo D., and Parvathi K., 2001, The
biosynthesis of monolignols: a ‘‘metabolic grid’’, or
independent pathways to guaiacyl and syringyl units,
Phytochemistry, 57: 1069-1084
Guo D.J., Chen F., Inoue K., Blount J.W., and Dixon R.A., 2001,
Downregulation of caffeic acid 3-O-methyltransferase and
caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa:
impacts on lignin structure and implications for the
biosynthesis of G and S lignin, Plant Cell, 13(1): 73-88
Humphreys J.M. and Chapple C., 2002, Rewriting the lignin
roadmap, Current Opinion in Plant Biology, 5: 224-229
Ibrahim R.K., Bruneau A., and Bantignies B., 1998, Plant O-met-
hyltransferases: molecular analysis, common signature and
classification, Plant Mol. Biol., 36: 1-10
Joshi C.P., and Chiang V.L., 1998, Conserved sequence motifs in
plant S-adenosyl-L-methionine-dependent methyltransferases,
Plant Mol. Biol., 37: 663-674
Li L., Popko J.L., Umezawa T., and Chiang V.L., 2000,
5-Hydroxyconiferyl aldehyde modulates enzymatic
methylation for syringyl monolignol formation, a new view
of monolignol biosynthesis in angiosperms, J. Biol. Chem.,
275: 6537-6545
Osakabe K., Tsao C.C., Li L., Popko J.L., Umezawa T., and
Carraway D.T., 1999, Coniferyl aldehyde 5-hydroxylation
and methylation direct syringyl lignin biosynthesis in
angiosperms, Proc. Natl. Acad. Sci. USA, 96: 8955-8960
Pak F.E., Gropper S., Dai W.D., Havkin-Frenkel D., and
Belanger F.C., 2004, Characterization of a multifunctional
methyltransferase from the orchid Vanilla planifolia, Plant
Cell Rep., 22: 959-966
Parvathi K., Chen F., Guo D., Blount J.W., and Dixon R.A.,
2001, Substrate preferences of O-methyltransferases in
alfalfa suggest new pathways for 3-O-methylation of
monolignols, Plant J., 25: 193-202
Schroder G., Wehinger E. and Schroder J., 2002, Predicting the
substrates of cloned plant O-methyltransferases,
Phytochemistry, 59: 1-8
Wang J., and Pichersky E., 1999, Identification of specific residues
involved in substrate discrimination in two plant O-methy-
ltransferases, Arch. Biochem. Biophys., 368: 172-180
Wang J., and Pichersky E., 1998, Characterization of S-adenosyl-
L-methionine: (iso) eugenol O-methyltransferase involved
in floral scent production in Clarkia breweri, Arch. Biochem.,
Biophys., 349: 153-160
Wang J., Dudareva N., Bhakta S., Raguso R.A., and Pichersky E.,
1997, Floral scent production in Clarkia breweri (Onagraceae)
II. Localization and developmental modulation of the enzyme
S-adenosyl-l-methionine: (iso) eugenol O-methyltransferase
and phenylpropanoid emission, Plant Physiol., 114:213-221
Wu S., Watanabe N., Mita S., Ueda Y., Shibuya M., and
Ebizuka Y., 2003, Two O-methyltransferases isolated from
flower petals of Rosa chinensis var. spontanea involved in
scent biosynthesis, J. Biosci. Bioeng., 96: 119-128
Zubieta C., Kota P., Ferrer J-L., Dixon R.A., and Noel J.P., 2002,
Structural basis for the modulation of lignin monomer
methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-me-
thyltransferase, Plant Cell, 14: 1265-1277