I
dentification Novel phaC1 Gene Native Pseudomonas putida KT2442 Key Gene for PHA Biosynthesis
20
termination method as described (Tomris et al., 2007)
with a 310 Genetic Analyzer (Perkin Elmer). The
resulting nucleotide sequence was analyzed with
genetic information processing software Bioedit. The
bioinformatics of the amplified sequences were
extracted by using NCBI BLAST program (Wiese et
al., 2011).
3.5 Bioinformatic Method for Phylogenetic Tree
A set of homologous DNA sequences made to build a
tree. The sequence from the PCR-amplified phaC1
gene and feed it into the blastn web interfaces at the
NCBI by pasting it into the main search box. The
following sequence were applied in blastn:
Pseudomonas_putida
_KT2442
aagagcttggtccgcttgtgctggagaacagctggcagactttcatcatcca
ttgggggcaccccgacaactaccacgccaatggggcctgaccacctatgt
cgaggccctcaacgaggccatcgaggtcatcctgtagatcaccggcagcc
acgacctgaacctggtcggcgcctgctccggcg
A list of hits were obtained for which the seventeen
sequences were selected to built a phylogenetic tree
for (partially
phaC1
genes:)
Pseudomonas_putida
_KT2442,
Pseudomonas_aeruginosa
_LESB58,
Pseudomonas_aeruginosa
_PAO1,
Pseudomonas_aeruginosa
_phaC1,
Pseudomonas_aeruginosa
_B136-33,
Pseudomonas_aeruginosa
_DK2,
Pseudomonas_aeruginosa
_M18,
Pseudomonas_aeruginosa
_UCBPP-PA14,
Pseudomonas_aeruginosa
_strain_GS1,
Pseudomonas_aeruginosa
_NCGM2.S1,
Pseudomonas_denitrificans
_ATCC_13867,
Pseudomonas_aeruginosa
_strain_DM2,
Pseudomonas_aeruginosa
_strain_DM1,
Pseudomonas_aeruginosa
_PA7,
Pseudomonas_aeruginosa
_PhaC2,
Pseudomonas_aeruginosa
_PhaC1,
Pseudomonas_aeruginosa
_strain_P5
Acknowledgements
This work partially received financial support from
National Institute of Genetic Engineering and
Biotechnology, NIGEB.
References
Adkins J., Pugh S.h., McKenna R., and Nielsen D.R., 2012,
Engineering microbial chemical factories to produce
renewable “biomonomers”, Front Microbiol, 3: 313-318
http://dx.doi.org/10.3389/fmicb.2012.00313
PMid:22969753 PMCid:PMC3430982
Akhavan Sepahy A., Ghazi Sh., and Akhavan Sepahy M., 2011,
Cost-Effective Production and Optimization of Alkaline
Xylanase by Indigenous Bacillus mojavensis AG137
Fermented on Agricultural Waste, Enzyme Res., 20: 1-11
http://dx.doi.org/10.4061/2011/593624
PMid:21904670 PMCid:PMC3166571
Gangoiti J., Santos M., Prieto M.A., Mata I.D., Serra J.L., and
Llama M.J., 2012, Characterization of a Novel Subgroup
of Extracellular Medium-Chain-Length Polyhydroxyalkanoate
Depolymerases from Actinobacteria, Appl Environ
Microbiol, 78: 20-28
http://dx.doi.org/10.1128/AEM.01707-12
PMid:22865072 PMCid:PMC3457088
Guo-Qiang C.H., 2009, A microbial polyhydroxyalkanoates
(PHA) based bio and materials industry, Chem Soc Rev.,
38: 2434-2446
http://dx.doi.org/10.1039/b812677c
PMid:19623359
Hernandez-Eligio A., Castellanos M., Moreno S., and Espín G.,
2011, Transcriptional activation of the Azotobacter
vinelandii polyhydroxybutyrate biosynthetic genes
phbBAC
by
PhbR
and
RpoS
, Microbiology, 157(Pt 11):
3014-3023
http://dx.doi.org/10.1099/mic.0.051649-0
PMid:21778206
Hume A.R., Nikodinovic-Runic J., and O'Connor K.E., 2009,
FadD from
Pseudomonas putida
CA-3 Is a True
Long-Chain Fatty Acyl Coenzyme A Synthetase That
Activates Phenylalkanoic and Alkanoic Acids, J Bacteriol.,
191(24): 7554-7565
http://dx.doi.org/10.1128/JB.01016-09
PMid:19820085 PMCid:PMC2786608
Koller M., Salerno A., Dias M., Reiterer A., and Braunegg G.,
2010, Modern biotechnological polymer synthesis: A
review, Food Technol Biotechnol, 48(3): 255-269
Levis J.W, and Barlaz M.A., 2011, Is Biodegradability a
Desirable Attribute for Discarded Solid Waste?
Perspectives from a National Landfill Greenhouse Gas
Inventory Model, Environ Sci Technol., 45: 5470-5476
http://dx.doi.org/10.1021/es200721s
PMid:21615182
Liu H., Luo Y., Han J., Wu J., Wu Z., and Feng D., 2013,
Proteome reference map of Haloarcula hispanica and
Computational
Molecular Biology