Page 9 - MP-Vol.3-NO.4

Basic HTML Version

Molecular Pathogens 2012, Vol.3, No.4, 19
-
26
ht
t
p://mp.sophiapublisher.com
24
stimulated in various plants in response to infection
with fungal pathogens and have correlation with
increased resistance.
5 Conclusions
A prolonged solution to control plant diseases is only
the development of resistant varieties because chemical
control is not ecosystem friendly and biological control
is tedious and intricate to management point of view.
Various molecular approaches to confer resistance
against many fungal and bacterial pathogens have been
conjure up such as the use of antimicrobial proteins
genes that inactivate pathogenicity natural disease
resistance genes, phytoalexins, and antimicrobial
peptides and many of these genes have been effectively
utilized to control plant bacterial and fungal infections.
Reference
Agrios G.N., ed., 1997, Plant Pathology, 4th ed., Academic Press, San Diego,
California
Ahmad R.I., 2009, Reverse and forward genetic approaches for the
development of disease resistant wheat (
Triticum aestivum L.
),
PhD thesis
Ayoo L.M.K., Bader M., Loerz H., and Becker D., 2011, Transgenic
sorghum (
Sorghum bicolor
L. Moench) developed by transformation
with chitinase and chitosanase genes from
Trichoderma harzianum
expresses tolerance to anthracnose, African Journal of Biotechnology,
10(19): 3659-3670
Bartnicki-Garcia S., 1968, Cell wall chemistry morphogenesis and
taxonomy of fungi, Annual Review of Microbiology, 22: 87-108
http://dx.doi.org/10.1146/annurev.mi.22.100168.000511 PMid:4879523
Bent A.F., 1996, Plant disease resistance genes: function meets structure,
Plant Cell, 8(10): 1757-1771 PMid:12239361 PMCid:161313
Botha A.M., Nagel M.A.C., van der Westhuizen A.J., and Botha F.C., 1998,
Chitinase isoenzymes in near-isogenic wheat lines challenged with
Russian wheat aphid, exogenous ethylene, and mechanical wounding,
Bot. Bull. Acad. Sin., 39: 99-106
Broglie K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S.,
Mauvais C.J., and Broglie R., 1991, Transgenic plants with enhanced
resistance to the fungal pathogen
Rhizoctonia solani
, Science,
254(5035): 1194-1197 http://dx.doi.org/10.1126/science.254.5035.1194
PMid:17776411
Bussing A., Schaller G., and Pfuller U., 1998, Generation of reactive exygen
intermediates (ROI) by the thionins from viscum album L, Anticancer
Research, 18: 4291-4296 PMid:9891480
Cabib E., 1987, The synthesis and degradation of chitin, Advances in
Enzymology and Related Areas of Molecular Biology, 59: 59-101
PMid:2949540
Cammue B.P.A., de Bolle M.F.C., Tervas F.R.G., Proost P. van Damme J.,
Rees S.B., Vanderleyden J.,and Broekaert W.F., 1992, Isolation and
characterization of a novel class of plant antimicrobial peptides from
mirabilis
jalapa
L. Seeds, Journal of Biological Chemistry, 267:
2228-2233 PMid:1733929
Cervone F., Hahn M.G., de Lorenzo F., Darvill F., and Albersheim P., 1989,
Host pathogen interactions. XXX III. A plant protein converts a fungal
pathogenesis factor into an elicitor of plant defense responses. Plant
Physiology, 90(2): 542-548 http://dx.doi.org/10.1104/pp.90.2.542
PMid:16666805 PMCid:1061758
Chet I., Schichler H., Haran S., and Appenheim A.B. 1993, Cloned chitinase
and their role in biological control of plant pathogenic fungi, Int. sym.
Chitin. Enzymol. Senigallia (Italy), 47-48
Collinge D.B., Kragh K.M., Mikkelsen J.D., Nielsen K.K., Rasmussen U.,
and Vad K. 1993, Plant chitinases, The Plant Journal, 3(1): 31–40
http://dx.doi.org/10.1046/j.1365-313X.1993.t01-1-00999.x
PMid:8401605
Collins M.S. and Pappagianis D., 1974, Lysozyme enhanced killing of
candida albicans and coccidioides immitis by amphotericin B, Medical
Mycology, 12(3): 329-340 http://dx.doi.org/10.1080/00362177485380471
Cordero M.J., Reventos D., and Segundo B.S., 1994, Expression of a maize
proteinase inhibitor gene is induced in response to wounding and
fungal infection systemic wound response of a monocot gene, The
Plant Journal, 6(2): 141-150 http://dx.doi.org/10.1046/j.1365-313X.1994.
6020141.x PMid:7920708
Coulon A., Berkane E., Sautereau A.M., Urech K., Rouge P., and Lopex A.,
2002, Mode of membrane interactions of a natural cysteine-rich peptide:
viscotoxin A3, Biochimicaet Biohysice Acta, 1559(2): 145-149
Dana M.M., Pintor-Toro J.A., and Cubero B., 2006, Transgenic tobacco
plants over-expressing chitinases of fungal origin show enhanced
resistance to biotic and abiotic agents, Plant Physiology, 142(2): 722-730
http://dx.doi.org/10.1104/pp.106.086140 PMid:16891545 PMCid:1586035
Dangl J. and Holub E., 1997, La dolce vita: a molecular feast in
plant-pathogen interactions, Cell, 91(1): 17-24 http://dx.doi.org/10.1016/
S0092-8674(01)80005-2
Dangl J.L. and Jones J.D., 2001, Plant pathogens and integrated defence
response to infection, Nature, 411(6839): 826-833
Davies D.A.L. and Pope A.M.S., 1978, Mycolase, a new kind of systemic
antimycotic, Nature, 273: 235-236 http://dx.doi.org/10.1038/273235a0
PMid:643083
De La Cruz J., Hidalgo-Gallego A., Lora J.M., Benitez T., Pintor-Toro J.A.,
and Llobell A., 1992, Isolation and characterization of three chitinases
from
Trichoderma harzianum
, European Journal of Biochemistry,
206(3): 859-867 http://dx.doi.org/10.1111/j.1432-1033.1992.tb16994.x
PMid:1606968
Di Pietro A., Lorito M., Hayes C.K., Broadway R.M., and Harman G.E., 1993,
Endochitinase from Gliocladium virens: isolation, characterization and
synergistic antifungal activity in combination with gliotoxin,
Phytopathology, 83: 308-313 http://dx.doi.org/10.1094/Phyto-83-308
Feys B.J. and Parker J.E., 2000, Interplay of signalling pathways in plant
disease resistance, Trends in Genetics, 16(10): 449-455
http://dx.doi.org/10.1016/S0168-9525(00)02107-7
Gooday G.W., 1994, Physiology of microbial degradation of chitin and
chitosan, In: Ratledge C. (ed.), Biochemistry of microbial degradation.
Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 279-312
http://dx.doi.org/10.1007/978-94-011-1687-9_9
Grison R., Grezes-Besset B., Schneider M., Lucante N., Olsen L., Leguay