Page 16 - IJMS-2014v4n18

Basic HTML Version

International Journal of Marine Science 2014, Vol.4, No.18: 166-178
http://ijms.sophiapublisher.com
177
of POC with increasing of CO
2
concentration. PIC
concentration at Barru and Takalar showed a slightl
higher at 96 hours than 48 hours of incubation period
and for Barrang Lompo mesocosm experiment PIC
was higher at 48 hours than 96 hours of incubation
period.
Chlorophyll a and cell abundance was decresing with
increasing CO
2
concentration for all location of
mesocosm experiment. Increasing CO
2
concentration
affected negatively to growth, photosynthesis and
calcification rate. Growth, photosynthesis and
calcification rate decreased with increasing CO
2
concentration.
Acknowledgement
The authors’ would like to thank to the Directorate General of
Higher Education, Ministry of National Education, Republic of
Indonesia for the financial assistance of this research through
the research scheme of Overseas Research Collaboration for
International Publication. Infrastructure facility provided by
Marine Science and Fisheries Faculty and Research and
Development Center for Marine, Coastal and Small Islands,
Hasanuddin University, Makassar, Indonesia and School of
Biological Science, Essex University are duly acknowledged.
References
Beardall J., and Raven J.A., 2004, The potential effects of
global climate change in microalgal photosynthesis,
growth and ecology. Phycologia, 43:31–45
http://dx.doi.org/10.2216/i0031-8884-43-1-26.1
Bijma J., Spero H.J., and Lea D.W., 1999, Reassessing
foraminiferal stable isotope geochemistry: Impact of the
oceanic carbonate system (Experimental results), in Use of
Proxies in Paleoceanography: Examples From the South
tlantic, pp. 489–521, edited by G. Fischer and G. Wefer.
http://dx.doi.org/10.1007/978-3-642-58646-0_20
Burkhardt S., Amoroso G., Riebesell U., and S¨ultemeyer D.,
2001, CO2 and HCO3 uptake in marine diatoms
acclimated to different CO2 concentrations. Limnol.
Oceanogr., 46:1378–1391
http://dx.doi.org/10.4319/lo.2001.46.6.1378
Delille B., 2005, Response of primary production and
calcification to changes of pCO2 during experimental
blooms of the coccolithophorid Emiliania huxleyi, Global
Biogeochem. Cycles, 19, GB2023
http://dx.doi.org/10.1029/2004GB002318
Doney S.C., Fabry V.J., Feely R.A., and Kleypas J.A., 2008,
Ocean Acidification: The Other CO2 Problem. Annual
Review Marine Science. 1: 169 – 192
http://dx.doi.org/10.1146/annurev.marine.010908.163834
Engel, A., Zondervan, I., Beaufort, L., Benthien, A., Delille, B.,
Villefranche, D., Terbrueggen, A. 2005. Testing the direct
effect of CO 2 concentration on a bloom of the
coccolithophorid Emiliania huxleyi in mesocosm
experiments Limnology and Oceanography,
50
(2),
493–507.
http://dx.doi.org/10.4319/lo.2005.50.2.0493
Gattuso JP, Allemand D, Frankignoulle M. 1999.
Photosynthesis and calcification at cellular, organismal
and community levels in coral reefs: a review on
interactions and control by carbonate chemistry. Am Zool
39:160–183
http://dx.doi.org/10.1016/S0921-8181(98)00035-6
Gattuso J-P, Frankignoulle M, Bourge I, Romaine S,
Buddemeier RW. 1998. Effect of calcium carbonate
saturation of seawater on coral calcification. Global Planet
Change 18:37–46
Giordano, M., Beardall, J., and Raven, J. 2005. CO2
concentrating mechanisms in algae: mechanisms,
environmental modulation, and evolution. Annual review
of plant biology, 56, 99–131.
http://dx.doi.org/10.1146/annurev.arplant.56.032604.1440
52
Hein M, Sand-Jensen K. 1997. CO2 increases oceanic primary
production. Nature 388:526
http://dx.doi.org/10.1038/41457
Houghton, J.T., Meira filho, L.G., Callander, B.A., Harris,
N.,Kattenberg, A., Maskell, K., 1996. Climate Change.
1996. The Science of Climate Change. Cambridge Univ.
Press, Cambridge, 572 pp.
Kleypas, J. A., J. W. McManus, and L. A. B. Menez.1999.
Environmental limits to coral reef development:Where do
we draw the line? Amer. Zool.39:146-159.
Langer, G., Geisen, M., Baumann, K.-H., Kläs, J., Riebesell, U.,
Thoms, S., and Young, J. R. (2006). Species-specific
responses of calcifying algae to changing seawater
carbonate
chemistry.
Geochemistry,
Geophysics,
Geosystems, 7: Q09006
http://dx.doi.org/10.1029/2005GC001227
Lea, D. W., Martin, P. A., Chan, D. A., and Spero, H. J. 1995.:
Calciumuptake and calcification rate in the planktonic
foraminifer Orbulina universa, J. Foraminifer. Res., 25,
14–23.
http://dx.doi.org/10.2113/gsjfr.25.1.14
Martin,C.L
and
Tortell,
P.D.
2006.
Bicarbonate
transportandextracellular carbonic anhydrase activity in
Bering Sea phytoplankton assemblages: results from
isotope disequilibrium experiments. Limnol Oceanogr
51:2111–21
http://dx.doi.org/10.4319/lo.2006.51.5.2111
Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA,