Computational Molecular Biology 2016, Vol.6, No.3, 1-6
6
Pant K., Pant B., and Pardasani K.R., 2007, Support Vector Machine for Classification of Plant and animal miRNA. International Conference on Advances in
Computing, Control, and Telecommunication Technologies, (2009), In: Aagaard L. and Rossi J.J., RNAi Therapeutics: Principles, Prospects and
Challenges, Elsevier Science
Prosperi M.C., 2009, Robust supervised and unsupervised statistical learning for HIV type 1 coreceptor usage analysis, AIDS Res Human retroviruses, 25(3):
305-314
Rao H., Yang G., Tan N., Li P., Li Z., and Li X., 2009, Prediction of HIV-1 Protease Inhibitors Using Machine Learning Approaches, QSAR & Combinatorial
Science, 28(11-12): 1346–1357
Schoenberg T., Hofreiter M., Schultz A., and Rompler H., 2009, Learning from the past: evolution of GPCR functions, Trends in Pharmacological Sciences,
28(3): 59-64
Schüpbach J., 2003, Viral RNA and p24 antigen as markers of HIV disease and antiretroviral treatment success, International Archives of Allergy &
Immunology, 132(3): 196-209
Scott M.S., Oomen R., Thomas D.Y., and Hallett M.T., 2006, Predicting the subcellular localization of viral proteins within a mammalian host cell, Virology
Journal, 3(1): 1-8
Seelmeier S., Schmidt H., Turk V., and von der Helm K., 1988, Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin
A, Proc. Natl. Acad. Sci. U.S.A., 85(18): 6612–6616
Singh Y., and Mars M., eds, 2011, The use of Neural networks to predict virological response in HIV positive patients, In: The international eHealth,
Telemedicine, and Health ICT forum of education, networking and business, Luxamburg, 1-25
Söllner J., and Mayer B., 2006, Machine learning approaches for prediction of linear B-cell epitopes on proteins, J Mol Recognition
,
19(3): 200-208
Song C., and Shi F., 2010, Prediction of subcellular localization of apoptosis proteins by dipeptide composition, International Journal of Digital content
Technology and its Applications, 4(1): 32-36
Su C.Y., Chiu H.S., Lo A., Hwang J.K., Sung T.Y., and Hsu W.L., 2007, Protein subcellular localization prediction based on compartment-specific features and
structure conservation, BMC Bioinformatics, 8(1): 1-12
Szymczyna B.R., Taurog R.E., Young M.J., Snyder J.C., Johnson J.E., and Williamson J.R., 2009, Synergy of nmr, computation, and x-ray crystallography for
structural biology. Structure, 17(4): 499-507
Tsuji T., and Mitaku S., 2004, Features of transmembrane helices useful for membrane protein prediction, Chem-bioinformatics Journal, 4(3): 110-120
Valadez-González N., Gevorkian G., and Soler C., 2000, Transmembrane glycoprotein cross reactive hiv-1/hiv-2 epitope, Rev. bioméd, 11(3): 155-160
White S.H., and Von H.G., 2008, How translocons select transmembrane helices, Biophysics, 37(37): 23-42
Wu C.H., Huang H., Yeh L.S., and Barker W.C., 2003, Protein family classification and functional annotation, Computational Biology & Chemistry, 27(1):
37-47
Xu D., Tsai C.J., and Nussinov R., 1997, Hydrogen bonds and salt bridges across protein-protein interfaces, Protein Engineering, Design and Selection, 10(9):
999-1012
Yang X.G., Luo R.Y., and Feng Z.P.
,
2006, Using amino acid and peptide composition to predict membrane protein types, Biochemical Biophysics Research
Communication, 353(1): 164-169
Yavuz O., and Ozyilmaz L., 2009, Analysis and Classification of HIV-1 Sub-Type Viruses by AR Model through Artificial Neural Networks, World Academy
of Science, Engineering and Technology 49: 826-831
Zazzi M., Incardona F., Rosen-Zvi M., Prosperi M., Lengauer T., Altmann A., Sonnerborg A., Lavee T., Schülter E., and Kaiser R., 2012, Predicting response
to antiretroviral treatment by machine learning: the euresist project, Intervirology, 55(2): 123-127