16 - CMB-2014v4n9页

基本HTML版本

Computational Molecular Biology 2014, Vol. 4, No. 10, 1-17
http://cmb.biopublisher.ca
12
experimental efforts. Serving the guide for genome
and extra-nucleus information flow, histone
modifications can reveal important information for
functional genomic studies. Based on the association
of histone modification co-localization and gene
function, novel measures for gene functional
annotation are promising. Gene similarity measures
can therefore potentially benefit from epigenetic and
expression profiles. Systematic studies of co-localization
will hopefully illuminate the mechanisms of the
distinct underlying genomic characteristics associating
with different co-localizations of H3K4me. Histone
modification co-localization may provide cubic targets
for chromatin regulation, and further efforts should be
paid for functional studies of histone modification
co-localization.
Authors' contributions
JL drafted the manuscript and performed the bioinformatics
analysis. HBL and HL collected data and pre-preprocessing.
QW and YZ conceived of the study, and participated in its
design and coordination. All authors read and approved the
final manuscript.
Acknowledgments
The authors thank National Natural Science Foundation of
China for funding. This work is supported by the National
Natural Science Foundation of China [31171383, 31271558,
31371478, 31371334].
References
Agger K., Christensen J., Cloos P.A., and Helin K., 2008, The emerging
functions of histone demethylases, Curr Opin Genet Dev
,
18
:
159-168
Alvarez-Venegas R., and Avramova Z., 2005, Methylation patterns of
histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and
inactive Arabidopsis genes and in atx1 mutants, Nucleic Acids Res
,
33
:
5199-5207
Barski A., Cuddapah S., Cui K., Roh T.Y., Schones D.E., Wang Z., Wei G.,
Chepelev I., and Zhao K., 2007, High-resolution profiling of histone
methylations in the human genome, Cell
,
129
:
823-837
Bernstein B.E., Mikkelsen T.S., Xie X., Kamal M., Huebert D.J., Cuff J.,
Fry B., Meissner A., Wernig M., Plath K., Jaenisch R., Wagschal A.,
Feil R., Schreiber S.L., and Lander E.S., 2006, A bivalent chromatin
structure marks key developmental genes in embryonic stem cells, Cell
,
125
:
315-326
Bird A.P., Taggart M.H., Nicholls R.D., and Higgs D.R., 1987,
Non-methylated CpG-rich islands at the human alpha-globin locus:
implications for evolution of the alpha-globin pseudogene, EMBO J
,
6
:
999-1004
Bradnam K.R., and Korf I., 2008, Longer first introns are a general property
of eukaryotic gene structure, PLoS ONE
,
3
:
e3093
Cosgrove M.S., and Wolberger C., 2005, How does the histone code work?,
Biochem Cell Biol
,
83
:
468-476
Cui K., Zang C., Roh T.Y., Schones D.E., Childs R.W., Peng W., and Zhao
K., 2009, Chromatin signatures in multipotent human hematopoietic
stem cells indicate the fate of bivalent genes during differentiation, Cell
Stem Cell
,
4
:
80-93
Fischle W., Wang Y., and Allis C.D., 2003, Binary switches and
modification cassettes in histone biology and beyond, Nature
,
425
:
475-479
Gardiner-Garden M., and Frommer M., 1987, CpG islands in vertebrate
genomes, J Mol Biol
,
196
:
261-282
Gavva N.R., Wen S.C., Daftari P., Moniwa M., Yang W.M., Yang-Feng L.P.,
Seto E., Davie J.R., and Shen C.K., 2002, NAPP2, a peroxisomal
membrane protein, is also a transcriptional corepressor, Genomics
,
79
:
423-431
Heintzman N.D., Stuart R.K., Hon G., Fu Y., Ching C.W., Hawkins R.D.,
Barrera L.O., Van Calcar S., Qu C., Ching K.A., Wang W., Weng Z.,
Green R.D., Crawford G.E., and Ren B., 2007, Distinct and predictive
chromatin signatures of transcriptional promoters and enhancers in the
human genome, Nat Genet
,
39
:
311-318
Huang Da W., Sherman B.T., and Lempicki R.A., 2009, Systematic and
integrative analysis of large gene lists using DAVID bioinformatics
resources, Nat Protoc
,
4
:
44-57
Hui J., Hung L.H., Heiner M., Schreiner S., Neumuller N., Reither G., Haas
S.A., and Bindereif A., 2005, Intronic CA-repeat and CA-rich elements:
a new class of regulators of mammalian alternative splicing, EMBO J
,
24
:
1988-1998
Ji H., Jiang H., Ma W., Johnson D.S., Myers R.M., and Wong W.H., 2008,
An integrated software system for analyzing ChIP-chip and ChIP-seq
data, Nat Biotechnol
,
26
:
1293-1300
Keshava Prasad T.S., Goel R., Kandasamy K., Keerthikumar S., Kumar S.,
Mathivanan S., Telikicherla D., Raju R., Shafreen B., Venugopal A.,
Balakrishnan L., Marimuthu A., Banerjee S., Somanathan D.S.,
Sebastian A., Rani S., Ray S., Harrys Kishore C.J., Kanth S., Ahmed
M., Kashyap M.K., Mohmood R., Ramachandra Y.L., Krishna V.,
Rahiman B.A., Mohan S., Ranganathan P., Ramabadran S., Chaerkady
R., and Pandey A., 2009, Human Protein Reference Database--2009
update, Nucleic Acids Res
,
37
:
D767-772
Larsen F., Gundersen G., Lopez R., and Prydz H., 1992, CpG islands as gene
markers in the human genome, Genomics
,
13
:
1095-1107
Liu C.L., Kaplan T., Kim M., Buratowski S., Schreiber S.L., Friedman N.,
and Rando O.J., 2005, Single-nucleosome mapping of histone
modifications in S. cerevisiae, PLoS Biol
,
3
:
e328
Liu H., Chen Y., Lv J., Zhu R., Su J., Liu X., Zhang Y., and Wu Q., 2013,
Quantitative epigenetic co-variation in CpG islands and co-regulation
of developmental genes, Sci Rep
,
3
:
2576
Lv J., Qiao H., Liu H., Wu X., Zhu J., Su J., Wang F., Cui Y., and Zhang Y.,
2010a, Discovering cooperative relationships of chromatin
modifications in human T cells based on a proposed closeness measure,
PLoS ONE
,
5
:
e14219