Computational Molecular Biology 2014, Vol. 4, No. 7, 1-17
http://cmb.biopublisher.ca
10
Funding
The work is funded by Youngstown State University (YSU)
Research Council. The work is also supported by a YSU
Research Professorship award and the College of Science,
Technology, Engineering, and Mathematics Dean’s reassigned
time for research to XJM. JM was supported with a graduate
research assistantship by the Center for Applied Chemical
Biology at YSU.
References
Alfaro M., Oguiza J.A., Ramírez L. et al
.
2014, Comparative analysis of
secretomes in basidiomycete fungi, J Proteomics, 102C: 28-43
Bendtsen J.D., Jensen L.J., Blom N. et al. 2004a, Feature based prediction
of non-classical and leaderless protein secretion, Protein Eng Des Sel,
17: 349-356
Bendtsen J.D., Nielsen H., von Heijne, G. et al
.
2004b, Improved prediction
of signal peptides: SignalP 3.0, J Mol Biol, 340: 783-795
Bouws H., Wattenberg A. and Zorn H, 2008, Fungal secretomes-nature's
toolbox for white biotechnology. Appl. Microbiol. Biotechnol. 80:
381-388
Braaksma M., Martens-Uzunova E.S., et al
.
2010, An inventory of the
Aspergillus niger
secretome by combining in silico predictions with
shotgun proteomics data,
BMC Genomics
, 19: 584
Brown N.A., Antoniw J., and Hammond-Kosack K.E., 2012, The predicted
secretome of the plant pathogenic fungus
Fusarium graminearum
: a
refined comparative analysis, PLoS One, 7: e33731
Caccia D., Dugo M., Callari M., et al
.
(2013) Bioinformatics tools for
secretome analysis, Biochim. Biophys. Acta., 1834: 2442-2453
Choi J., Park J., Kim D., et al
.
2010, Fungal secretome database: integrated
platform for annotation of fungal secretomes, BMC Genomics, 11: 105
Cortázar A.R., Aransay A.M., Alfaro M., et al
.
2014, SECRETOOL:
integrated secretome analysis tool for fungi, Amino Acids, 46: 471-473
de Castro E., Sigrist C.J., Gattiker A., et al
.
2001 ScanProsite: detection of
PROSITE signature matches and ProRule-associated functional and
structural residues in proteins, Nucleic Acids Res., 34: W362-365
Do Vale L.H., Gómez-Mendoza D.P., Kim M.S., et al. 2012, Secretome
analysis of the fungus
Trichoderma harzianum
grown on cellulose,
Proteomics, 12: 2716-2728
Druzhinina I.S., Shelest E., and Kubicek C.P., 2012, Novel traits of
Trichoderma predicted through the analysis of its secretome, FEMS
Microbiol Lett., 337: 1-9
Emanuelsson O., Brunak S., von Heijne G., et al
.
2007, Locating proteins in
the cell using TargetP, SignalP and related tools, Nat. Protoc., 2:
953-971
Ene I.V., Heilmann C.J., Sorgo A.G., et al
.
(2012) Carbon source-induced
reprogramming of the cell wall proteome and secretome modulates the
adherence and drug resistance of the fungal pathogen
Candida albicans,
Proteomics, 12: 3164-3179
Girard V., Dieryckx C., Job C. et al
.
2013, Secretomes: the fungal strike
force, Proteomics, 13: 597-608
Horton P., Park K.-J., Obayashi T., et al
.
2007, WoLF PSORT: protein
localization predictor, Nucleic Acids Res., 35: W585-587
Jung Y.H., Jeong S.H., Kim S.H., et al
.
2012, Secretome analysis of
Magnaporthe oryzae
using in vitro systems, Proteomics, 12: 878-900
Käll L., Krogh A., and Sonnhammer E.L.L., 2007, Advantages of combined
transmembrane topology and signal peptide prediction - the Phobius
web server, Nucleic Acids Res., 35: W429-432
Krogh A., Larsson B., von Heijne G., et al
.
2001, Predicting transmembrane
protein topology with a hidden Markov model: Application to complete
genomes, J. Mol. Biol., 305: 567-580
Lange L., Bech L., Busk P.K., et al. 2012, The importance of fungi and of
mycology for a global development of the bioeconomy, IMA Fungus, 3:
87-92
Lee S.A., Wormsley S., Kamoun S., et al
.
2003, An analysis of the
Candida
albicans
genome database for soluble secreted proteins using
computer-based prediction algorithms, Yeast, 20: 595-610
Lowe R.G., and Howlett B.J., 2012, Indifferent, affectionate, or deceitful:
lifestyles and secretomes of fungi, PLoS pathogens, 8: e1002515
Lum G., and Min X.J., 2011, FunSecKB: the fungal secretome
knowledgebase,
Database (Oxford),
2011, doi: 10.1093/database/bar001
Lum G., and MinX.J., 2013, Bioinformatic protocols and the
knowledge-base for secretomes in fungi, In: Gupta V.K., Tuohy M.G.,
Ayyachamy M., Turner K.M. and O’Donovan A. (eds), Laboratory
Protocols in Fungal Biology: Current Methods in Fungal Biology,
Springer, pp 545-557
Lum G., Meinken J., Orr J., et al
.
2014, PlantSecKB: the plant secretome
and subcellular proteome knowledgebase
.
Comput. Mole. Biol., 4: 1-17
Martinez D., Challacombe J., Morgenstern I., et al
.
2009, Genome,
transcriptome, and secretome analysis of wood decay fungus
Postia
placenta
supports unique mechanisms of lignocellulose conversion,
Proc Natl Acad Sci U S A,106: 1954-1959
Martinez D., Larrondo L.F., Putnam N., et al
.
2004, Genome sequence of
the lignocellulose degrading fungus
Phanerochaete chrysosporium
strain RP78, Nat Biotechnol. 22: 695-700
McCarthy F.M., Wang N., Magee G.B., et al. 2006, AgBase: a functional
genomics resource for agriculture, BMC Genomics, 7: 229
Meinken J., and Min X.J., 2012, Computational prediction of protein
subcellular locations in eukaryotes: an experience report, Comput.
Mole. Biol., 2: 1-7
Melhem H., Min X.J., and Butler G., 2013, The impact of SignalP 4.0 on the
prediction of secreted proteins. IEEE Symposium Series on
Computational Intelligence (IIEEE SSCI 2013): The 10th annual IEEE
Symposium on Computational Intelligence in Bioinformatics and
Computational
Biology,
Singapore,
pp.16-22
(doi:
10.1109/CIBCB.2013.6595383)
Min X.J., 2010, Evaluation of computational methods for secreted protein
prediction in different eukaryotes, J. Proteomics Bioinform., 3: 143-147