Page 13 - Tree Genetics and Molecular Breeding

Basic HTML Version

Tree Genetics and Molecular Breeding 2014, Vol.4, No.2, 1
-
10
http://tgmb.biopublisher.ca
10
Hokanson S.C., Szewc-McFadden A.K., Lamboy W.F., and McFerson J.R.,
1998, Microsatellite (SSR) markers reveal genetic identities, genetic
diversity and relationships in a
Malus × domestica
Borkh. core subset
collection, Theor. Appl. Genet., 97(5): 671-683
http://dx.doi.org/10.1007/s001220050943
Iwanami H., Moriya S., Kotoda N., Mimida N., Takahashi-Sumiyoshi S.,
and Abe K., 2012, Mode of inheritance in fruit acidity in apple
analysed with a mixed model of a major gene and polygenes using
large complex pedigree, Plant Breed., 131(2): 322-328
http://dx.doi.org/10.1111/j.1439-0523.2011.01932.x
Kenis K., Keulemans J., and Davey M.W., 2008, Identification and stability
of QTLs for fruit quality traits in apple, Tree Genet. Genomes 4(4):
647-661
http://dx.doi.org/10.1007/s11295-008-0140-6
Khan S.A., Chibon P.Y., de Vos R.C.H., Schipper B.A., Walraven E.,
Beekwilder J., van Dijk T., Finkers R., Visser R.G.F., van de Weg E.W.,
Bovy A., Cestaro A., Velasco R., Jacobsen E., and Schouten H.J.,
2012a, Genetic analysis of metabolites in apple fruits indicates an
mQTL hotspot for phenolic compounds on linkage group 16, J. Exp.
Bot. 63(8): 2895-2908
http://dx.doi.org/10.1093/jxb/err464
Khan S.A., Schaart J.G., Beekwilder J., Allan A.C., Tikunov Y.M., Jacobsen
E., and Schouten H.J., 2012b, The mQTL hotspot on linkage group 16
for phenolic compounds in apple fruits is probably the result of a
leucoanthocyanidin reductase
gene at that locus, BMC Res. Notes
5:618
http://dx.doi.org/10.1186/1756-0500-5-618
Kingston C.M., 1992, Maturity indices for apple and pear, Hortic. Rev., 13:
407-432
Kosambi D.D., 1944, The estimation of map distances from recombination
values, Ann. Eugen. 12(1): 172-175
http://dx.doi.org/10.1111/j.1469-1809.1943.tb02321.x
Liebhard R., Gianfranceschi L., Koller B., Ryder C.D., Tarchini R., Van De
Weg E., and Gessler C., 2002, Development and characterisation of
140 new microsatellites in apple (
Malus × domestica
Borkh.), Mol.
Breed., 10(4): 217-241
Liebhard R., Kellerhals M., Pfammatter W., Jertmini M., and Gessler C.,
2003, Mapping quantitative physiological traits in apple (
Malus x
domestica
Borkh.), Plant Mol. Biol., 52(3): 511-526
http://dx.doi.org/10.1023/A:1024886500979
Maliepaard C., Alston F.H., Van Arkel G. et al.,, 1998, Aligning male and
female linkage maps of apple (
Malus pumila
Mill.) using multi-allelic
markers, Theor Appl Genet 97(1): 60-73
http://dx.doi.org/10.1007/s001220050867
MacDonald M.J., and D’Cunha G.B., 2007, A modern view of phenylalanine
ammonia lyase, Biochem. Cell Biol. 85(2): 273-282
http://dx.doi.org/10.1139/O07-018
Mellidou I., Chagné D., Laing W.A., Keulemans J., and Davey M.W., 2012,
Allelic variation in paralogs of GDP-L-Galactose phosphorylase is a
major determinant of vitamin C concentrations in apple fruit, Plant
Physiol., 160(3): 1613-1629
http://dx.doi.org/10.1104/pp.112.203786
Morimoto T., Hiramatsu Y., and Banno K., 2013, A Major QTL Controlling
Earliness of Fruit Maturity Linked to the Red leaf/Red flesh Trait in
Apple cv. ‘Maypole’, J. Jpn. Soc. Hortic. Sci, 82 (2): 97-105
http://dx.doi.org/10.2503/jjshs1.82.97
Murata M., Tsurutani M., Tomita M., Homma S., and Kaneko K., 1995.,
Relationship between apple ripening and browning: changes in
polyphenol content and polyphenol oxidase. J. Agric. Foods Chem.
43(5): 1115-1121
http://dx.doi.org/10.1021/jf00053a001
Silfverberg-Dilworth E., Matasci C.L., Van de Weg W.E., Van Kaauwen
M.P.W., Walser M., Kodde L.P., Soglio V., Gianfranceschi L., Durel
C.E., Costa F., Yamamoto T., Koller B., Gessler C., and Patocchi A.,
2006, Microsatellite markers spanning the apple (
Malus × domestica
Borkh.) genome, Tree Genet. Genomes, 2(4): 202-224
http://dx.doi.org/10.1007/s11295-006-0045-1
Sun R., and Li H., 2014, Mapping for quantitative trait loci and major genes
associated with fresh- cut browning in Apple, Hort Sci. 49(1): 25-30
Sun-Waterhouse D., Luberriaga C., Jin D., Wibisono R., Wadhwa S.S., and
Waterhouse G.I.N., 2013, Juices, fibres and skin waste extracts from
white, pink or red-fleshed apple genotypes as potential food ingredients,
Food Bioprocess Technol. 6 (2): 377-390
http://dx.doi.org/10.1007/s11947-011-0692-6
Ukai Y., 1998, MAPL: A package of computer programs for construction of
DNA polymorphism linkage maps and analysis of QTL, Breed. Sci.,
45(1): 139-142
Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., and Leunissen
J.A.M., 2007, Primer 3 Plus, an enhanced web interface to Primer 3,
Nucleic Acids Res., 35(2): 71-74
http://dx.doi.org/10.1093/nar/gkm306
Velasco R., Zharkikh A., Affourtit J., et al.,, 2010, The genome of the
domesticated apple (
Malus × domestica
Borkh.), Nat. Genet., 42:
833-839
http://dx.doi.org/10.1038/ng.654
Wang S., Bsaten C.J., and Zeng Z.B., 2010, Windows QTL Cartographer 2.5,
Department of Statistics, North Carolina State University, Raleigh, NC
Xu K., Wang A., and Brown S., 2011., Genetic characterization of the
Ma
locus with pH and titratable acidity in apple, Mol. Breed., 30(2):
899-912
http://dx.doi.org/10.1007/s11032-011-9674-7
Yamamoto T., Kimura T., Shoda M., Ban Y., Hayashi T., and Matsuta N.,
2002, Development of microsatellite markers in the Japanese pear
(
Pyrus pyrifolia
Nakai), Mol. Ecol. Notes 2(1): 14-16
http://dx.doi.org/10.1046/j.1471-8286.2002.00128.x
Zhang Y.Z., Li P.M., and Cheng L.L., 2010, Developmental changes of
carbohydrates, organic acids, amino acid, and phenolic compounds in
http://dx.doi.org/10.1016/j.foodchem.2010.05.053