Plant Gene and Trait, 2013, Vol.4, No.20, 109
-
123
http://pgt.sophiapublisher.com
122
Mostofa M.G., Fujita M., 2013, Salicylic acid alleviates copper toxicity in
rice (
Oryza sativa
L.) seedlings by up-regulating antioxidative and
glyoxalase systems, Ecotoxicology, DOI 10.1007/s10646-013-1073-x
http://dx.doi.org/10.1007/s10646-013-1073-x
Mustafiz A., Singh A.K., Pareek A., Sopory S.K., and Singla-Pareek S.L.,
2006, Genome-wide analysis of rice and Arabidopsis identifies two
glyoxalase genes that are highly expressed in abiotic stresses,
Functional and Integrative Genomics, 11:293–305 http://dx.doi.org/10.
1007/s10142-010-0203-2
Nakano Y., and Asada K., 1981, Hydrogen peroxide is scavenged by
ascorbate-specific peroxidase in spinach chloroplasts, Plant and Cell
Physiology, 22:867-880
Neill S., Desikan R., and Hancock J., 2002, Hydrogen peroxide signalling,
Current Opinion in Plant Biology, 5: 388–395 http://dx.doi.org/10.1016/
S1369-5266(02)00282-0
Noctor G., Mhamdi A., Chaouch S., Han Y., Neukermans J.,
Marquez-Garcia B., Queval G., Foyer C.H., 2012, Glutathione in plants:
an integrated overview, Plant Cell and Environment, 35:454-484
http://dx.doi.org/10.1111/j.1365-3040.2011.02400.x
Noctor G., Veljovic-Jovanovic S., Driscoll S., Novitskaya L., and Foyer C.,
2002, Drought and oxidative load in the leaves of C
3
plants: a
predominant role for photorespiration? Annals of Botany, 89, 841–850
http://dx.doi.org/10.1093/aob/mcf096
Petrov V.D., and Van Breusegem F., 2012, Hydrogen peroxide-a central hub
for information flow in plant cells.
AoB Plants,
pls014.
doi:10.1093/aobpla/pls014 http://dx.doi.org/10.1093/aobpla/pls014
Prasad T.K., Anderson M.D., Martin B.A., and Stewart C.R., 1994,
Evidence for chilling-induced oxidative stress in maize seedlings and a
regulatory role for hydrogen-peroxide. Plant Cell,
6: 65–74
http://dx.doi.org/10.1105/tpc.6.1.65 http://dx.doi.org/10.2307/3869675
Rouhier N., Lemaire S.D., Jacquot J.P., 2008, The role of glutathione in
photosynthetic organisms: emerging functions for glutaredoxins and
glutathionylation, Annual Review of Plant Biology, 59: 143–166
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092811
Saito R., Yamamoto H., Makino A., Sugimoto T., and Miyake C., 2011,
Methylglyoxal functions as hill oxidant and stimulates the photoreductin
of O
2
at photosystem I: a symptom of plant diabetes, Plant Cell and
Environment, 34(9):1454-1464 http://dx.doi.org/10.1111/j.1365-3040.
2011.02344.x
Sánchez-Rodíguez E., Rubio-Wilhelmi M., Cervilla L.M., Blasco B., Rioa
J.J., Rosales M.A., Romero L., and Ruiz J.M., 2011, Genotypic
differences in some physiological parameters symptomatic for
oxidative stress under moderate drought in tomato plants, Plant Science,
178:30-40 http://dx.doi.org/10.1016/j.plantsci.2009.10.001
Sekmen A.H., Türkan I., and Takio S., 2007, Differential responses of
antioxidative enzymes and lipid peroxidation to salt stress in
salt-tolerant
Plantago maritima
and salt-sensitive
Plantago media,
Physiologia Plantarum,
131: 399-411 http://dx.doi.org/10.1111/j.1399-
3054.2007.00970.x
Selote D.S., and Khanna-Chopra R., 2004, Drought-induced spikelet
sterility is associated with an inefficient antioxidant defense in rice
panicles, Physiologia Plantarum,
121:462-471 http://dx.doi.org/10.
1111/j.1399-3054.2004.00341.x
Sharma P., Jha AB., Dubey R.S., and Pessarakli M., 2012, Reactive oxygen
species, oxidative damage, and antioxidative defense mechanisms in
plants under stressful conditions, Journal of Botany, Article ID 217037,
26 pages
Singh L.P., Gill S.S., and Tuteja N., 2011, Unraveling the role of fungal
symbionts in plant abiotic stress tolerance, Plant Signaling and Behavior,
6:175-191 http://dx.doi.org/10.4161/psb.6.2.14146
Singla-Pareek S.L., Ray M., Reddy M.K., and Sopory S.K., 2003, Genetic
engineering of the glyoxalase pathway in tobacco leads to enhanced
salinity tolerance, Proceeding of the National Academy of Science,
USA, 100:14672–14677 http://dx.doi.org/10.1073/pnas.2034667100
Singla-Pareek S.L., Yadav S.K., Pareek A., Reddy M.K., and Sopory S.K.,
2006, Transgenic tobacco overexpressing glyoxalase pathway enzymes
grow and set viable seeds in zinc-spiked soils, Plant Physiology, 140:
613–623 http://dx.doi.org/10.1104/pp.105.073734
Suzuki N., Koussevitzky S., Mittler S., and Miller G., 2012, ROS and redox
signaling in the response of plants to abiotic stress, Plant Cell and
Environment, 35:259-270 http://dx.doi.org/10.1111/j.1365-3040.2011.
02336.x
Tahkokorpi M., Taulavuori K., Laine K., Taulavuori E.. 2007. Aftereffects of
drought-related winter stress in previous and current year stems of
Vaccinium myrtillus
L. Environmental and Experimental Botany 61:
85–93 http://dx.doi.org/10.1016/j.envexpbot.2007.03.003
Thornalley P.J., 1996, Pharmacoly of methylglyoxal: formation,
modification of proteins and nucleic acid, and enzymatic
detoxification- a role in pathogenesis and antiproliferative
chemotherapy, General Pharmacology, 27:565-573 http://dx.doi.org/10.
1016/0306-3623(95)02054-3
Turkan I., Bor M., Ozdemir F., and Koca H., 2005, Differential responses of
lipid peroxidation and antioxidants in the leaves of drought-tolerant
P.
acutifolius
Gray and drought-sensitive
P. vulgaris
L. subjected to
polyethylene glycol mediated water stress. Plant Biology, 168: 223-231
Upadhyaya C.P., Venkatesh J., Gururani M.A., Asnin L., Sharma K.,
Ajappala H., and Park S.W., 2011, Transgenic potato overproducing
L-ascorbic acid resisted an increase in methylglyoxal under salinity
stress via maintaining higher reduced glutathione level and glyoxalase
enzyme activity, Biotechnology Letters, 33:2297–2307 http://dx.doi.
org/10.1007/s10529-011-0684-7
Viveros M.F.A., Inostroza-Blancheteau C., Timmermann T., Gonzalez M.,
and Arce-Johnson P., 2013, Overvexpression of Gly I and Gly II genes
in transgenic tomato (
Solamum lycopersicum
Mill.) plants confer salt
tolerance by decreasing oxidative stress, Molecular Biology Reports,
40:3281-3290 http://dx.doi.org/10.1007/s11033-012-2403-4
Wang W., Vinocur B., and Altman A., 2003, Plant responses to drought,
salinity and extreme temperatures: towards genetic engineering for
stress tolerance, Planta, 218: 1–14 http://dx.doi.org/10.1007/s00425-
003-1105-5
Wang X., Guo X., Li Q., Tang Z.,Kwak S., and Ma D., 2012, Studies on
salt tolerance of transgenic sweetpotato which harbors two genes
expressing cuzn superoxide dismutase and ascorbate peroxidase with
the stress-inducible SWPA 2 promoter, Plant Gene and Trait, 3(2):6-12
Wang Y, Li J., Wang J., and Li Z., 2010a, Exogenous H
2
O
2
improves
the chilling tolerance of manilagrass and mascarenegrass by
activating the antioxidative system, Plant Growth Regulation,
61:195-204 http://dx.doi.org/10.1007/s10725-010-9470-0
Wang Z., Zhang L., Xiao Y., Chen W., and Tang K., 2010b
,
Increased vitamin
c content accompanied by an enhanced recycling pathway confers
oxidative stress tolerance in
Arabidopsis,
Journal of Integrative Plant
Biology 52:400-409 http://dx.doi.org/10.1111/j.1744-7909.2010.
00921.x
Wu C., Ma C., Pan Y., Gong S., Zhao C., Chen S., and Li H., 2012, Sugar
beet M14
glyoxalase I
gene can enhance plant tolerance to abiotic
stresses, Journal of Plant Research, Doi: 10.1007/s10265-012-0532-4
http://dx.doi.org/10.1007/s10265-012-0532-4
Xu W. F., Shi W. M., Ueda A. and Takabe T., 2008, Mechanisms of salt
tolerance in transgenic
Arabidopsis thaliana
carrying a peroxisomal
ascorbate peroxidase gene from barley, Pedosphere, 18(4): 486-495
http://dx.doi.org/10.1016/S1002-0160(08)60039-9
Yadav S.K., Singla-Pareek S.L., Ray M., Reddy M.K., and Sopory S.K.,
2005b, Transgenic tobacco plants overexpressing glyoxalase enzymes
resist an increase in methylglyoxal and maintain higher reduced
glutathione levels under salinity stress, Federation of European
Biochemical Societies Letters, 579: 6265–6271 http://dx.doi.org/10.
1016/j.febslet.2005.10.006
Yadav SK, Singla-Pareek SL, Ray M., Reddy M.K., and Sopory S.K., 2005a,
Methylglyoxal levels in plants under salinity stress are dependent on
glyoxalase I and glutathione,
Biochemical and Biophysical Research
Communication, 337: 61-67 http://dx.doi.org/10.1016/j.bbrc.2005.08.263
Yang S., Vanderbeld B., Wan J., Huang Y., 2010, Narrowing down the
targets: towards successful genetic engineering of drought-tolerant
crops, Molecular Plant, 3:479-490 http://dx.doi.org/10.1093/mp/ssq016
Yang Y., Han C., Liu Q., Lin B., and Wang J., 2008, Effect of drought and
low light on growth and enzymatic antioxidant system of
Picea