Plant Gene and Trait, 2013, Vol.4, No.20, 109
-
123
http://pgt.sophiapublisher.com
120
weight (Hossain and Fujita, 2010).
3.7 Determination of protein
The protein content of each sample was determined
following the method of Bradford (1976) using bovine
serum albumin (BSA) as a protein standard.
3.8 Statistical analysis
The experiment data were expressed as mean ±
standard deviation (SD) of three replicates. The
statistical significance of the means between the
control and the treatments were evaluated by one-way
ANOVA using the least significant difference (LSD)
test at the 1% (
P
<0.01) probability level.
Author’s contributions
Mohammad Anwar Hossain participated in the design of the experiment,
data collection, data analysis and manuscript preparation. Masayuki Fujita
supervised the experimental work and critically read the manuscript. All
authors read and approved the final manuscript.
Acknowledgement
Financial grant from Japan government (Monbukagakusho) is gratefully
acknowledged.
References
Aghaei K., Ehsanpour A.K., and Komatsu S., 2009, Potato responds to salt
stress by increased activity of antioxidant enzymes, Journal of
Integrative Plant Biology,
51: 1095-1103 http://dx.doi.org/10.1111/j.
1744-7909.2009.00886.x
Apel K., and Hirt H., 2004, Reactive oxygen species: metabolism, oxidative
stress, and signal transduction, Annual Review of Plant Biology,
55:373-399 http://dx.doi.org/10.1146/annurev.arplant.55.031903.
141701
Asada K., and Takahashi M., 1987, Production and scavenging of active
oxygen in photosynthesis. In: Kyle D.J., Osmond C.B., and Amtzen
C.J.(eds.), Photoinhibition, Elsevier Science Publication, Amsterdam,
pp. 227-287
Avsian K.O., Gueat D.Y., Lev Y.S., Gollop R., an Ben H.G., 2004. The salt
stress signal transduction pathway that activates the gpx1 promoter is
mediated by intracellular H
2
O
2
different from the pathway induced by
extracellular H
2
O
2,
Plant Physiology, 135(2):1685-1696 http://dx.doi.
org/10.1104/pp.104.041921
Banu M.N.A., Hoque M.A., Watamable-Sugimoto M., Islam M.A., Uraji M.,
Matsuoka M., Nakamura Y., and Murata Y., 2010, Proline and
glycinebetaine ameliorated NaCl stress via scavenging of hydrogen
peroxide and methylglyoxal but not superoxide or nitric oxide in
tobacco cultured cells, Bioscience Biotechnology and Biochemistry,
74:2043-2049 http://dx.doi.org/10.1271/bbb.100334
Bradford M.M., 1976, A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding, Analytical Biochemistry, 72: 248-254 http://dx.doi.org/10.
1016/0003-2697(76)90527-3
Chugh V., Kaur N., Grewal M.S., Kupta A.K., 2013, Differential
antioxidative response of tolerant and sensitive maize (
Zea mays
L.)
genotypes of drought stress at reproductive stage, Indian Journal of
Biochemistry and Biophysics, 50: 150-158
Creighton D.J., Migiliorini M., Pourmotabbed T., and Guha M.K., 1988,
Optimization of efficiency in the glyoxalase pathway, Biochemistry,
27:7376-7384 http://dx.doi.org/10.1021/bi00419a031
Cruz de Carvalho M.H., 2008, Drought stress and reactive oxygen species.
Plant Signaling and Behavior, 3: 156-165 http://dx.doi.org/10.4161/
psb.3.3.5536
Dixon D.P., Edwards R., 2010, Glutathione transferases. In: The Arabidopsis
book. The American Society of Plant Biologists, pp. 1-15
Duque A.S., de Almeida A.M., da Silva A.B., da Silva J.M., Farinha A.P.,
Santos D., Fevereiro P., and de Sousa Araújo S., 2013,
Abiotic stress
responses in plants: unraveling the complexity of genes and networks to
survive. In: Vahdati K., Leslie C. (eds.), Abiotic stress-plant responses
and applications in agriculture, INTECH-Open Access Publisher,
Croatia, pp. 49-101
Edwards R., Dixon D.P., Walbot V., 2000, Plant glutathione S-transferases:
Enzymes with multiple functions in sickness and health, Trends in
Plant Science, 5:193-198 http://dx.doi.org/10.1016/S1360-1385
(00)01601-0
El-Shabrawi H., Kumar B., Kaul T., Reddy M.K., Singla-Pareek S.L., and
Sopory S.K., 2010, Redox homeostasis, antioxidant defense, and
methylglyoxal detoxification as markers for salt tolerance in Pokkali
rice, Protoplasma, 245: 85-96 http://dx.doi.org/10.1007/s00709-010-
0144-6
Eltayeb A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T.,
Shibahara T., Inanaga S., and Tanaka K., 2007, over-expression of
monodehydroascorbate reductase in transgenic tobacco confers
enhcanced tolerance to ozone, salt and polythelene glycol stresses,
Planta 225: 1255-1264 http://dx.doi.org/10.1007/s00425-006-0417-7
Eltayev A.E., Kawano N., Badawi G.H., Kaminaka H., Sanekata T.,
Morishima I., Shibahara T., Inanaga S., Tanaka K., 2006, Enhanced
tolerance to ozone and drought stresses in transgenic tobacco
over-expressing dehydroascorbate reductase in cytosol, Physiologia
Plantarum, 127:57-65 http://dx.doi.org/10.1111/j.1399-3054.2006.
00624.x
Espartero J., Aguayo I.S., and Pardo J.M., 1995, Molecular
characterization of glyoxalase-I from a higher plant; upregulation
by stress, Plant Molecular Biology, 29: 1223-1233 http://dx.doi.org/
10.1007/BF00020464
Foyer C.H., and Noctor G., 2005, Redox homeostasis and antioxidant
signaling: A metabolic interface between stress perception and
physiological responses, Plant Cell
,
17:1866-1875 http://dx.doi.org/10.
1105/tpc.105.033589
Foyer C.H., and Noctor G., 2011, Ascorbate and glutathione: the heart of the
redox hub, Plant Physiology, 155: 2-18 http://dx.doi.org/10.1104/pp.
110.167569
Gallie D.R., 2013, The role of L-ascorbic acid recycling in responding
to environmental stress and in promoting plant growth, Journal of
Experimental Botany, 64(2): 433-443 http://dx.doi.org/10.1093/jxb/ers330
Gill S.S., and Tuteja N., 2010, Reactive oxygen species and antioxidant
machinery in abiotic stress tolerance in crop plants, Plant Physiology
and Biochemistry, 48: 909-930 http://dx.doi.org/10.1016/j.plaphy.
2010.08.016
Gong M., Chen B.O., Li Z.G., and Guo L.H., 2001, Heat-shock-induced
cross adaptation to heat, chilling, drought and salt stress in maize
seedlings and involvement of H
2
O
2
,
Journal of Plant Physiology,
158:1125-1130 http://dx.doi.org/10.1078/0176-1617-00327
Halusková L., Valentovicova K., Huttova J., Mistrik I., and Tamas L., 2009,
Effect of abiotic stresses on glutathione peroxidase and glutathione
S
-transferase activity in barley root tips, Plant Physiology and
Biochemistry, 47: 1069-1074 http://dx.doi.org/10.1016/j.plaphy.
2009.08.003
He L., Gao Z., Li R., 2009, Pretreatment of seed with H
2
O
2
enhances drought
tolerance of wheat (
Triticum aestivum
L.) seedlings, African Journal of
Biotechnology, 8:6151-6157
Hertwig B., Streb P., and Feierabend J., 1992, Light dependency of catalase
synthesis and degradation in leaves and the influence of interfering
stress conditions, Plant Physiology, 100:1457-1533 http://dx.doi.org/
10.1104/pp.100.3.1547
Hoque M.A., Banu M.N.A., Nakamura Y., Shimoishi Y., and Murata Y.,
2008, Proline and glycinebetaine enhance antioxidant defense and
methylglyoxal detoxification systems and reduce NaCl-induced
damage in cultured tobacco cells, Journal of Plant Physiology, 165:
813-824 http://dx.doi.org/10.1016/j.jplph.2007.07.013
Hoque M.A., Uraji M., Banu M.N.A., Mori I.C., Nakamura Y., and Murata