Page 12 - Molecular Plant Breeding

Basic HTML Version

Molecular Plant Breeding 2013, Vol.4, No. 30, 247
-
253
http://mpb.sophiapublisher.com
253
Chakrabarti A., Ganapathi T.R., Mukherjee P.K., and Bapat V.A., 2003,
MSI-99, a magainin analogue, imparts enhanced disease resistance in
transgenic tobacco and banana, Planta, 216 (4): 587-596
Conlon J.M., and Kim J.B., 2000, A Protease Inhibitor of the Kunitz Family
from Skin Secretions of the Tomato Frog, Dyscophus guineti
(Microhylidae), Biochemical and Biophysical Research Communi-
cations, 279 (3): 961-964 http://dx.doi.org/10.1006/bbrc.2000.4052
DeGray G., Rajasekaran K., Smith F., Sanford J., and Daniell H., 2001,
Expression of an antimicrobial peptide via the chloroplast genome to
control phytopathogenic bacteria and fungi, Plant physiology, 127 (3):
852-862 http://dx.doi.org/10.1104/pp.010233
Demeke T., Hucl P., Båga M., Caswell K., Leung N., and Chibbar R., 1999,
Transgene inheritance and silencing in hexaploid spring wheat, TAG
Theoretical and Applied Genetics, 99 (6): 947-953 http://dx.doi.org/10.
1007/s001220051401
Dong X., Ji R., Guo X., Foster S.J., Chen H., Dong C., Liu Y., Hu Q., and
Liu S., 2008, Expressing a gene encoding wheat oxalate oxidase
enhances resistance to
Sclerotinia sclerotiorum
in oilseed rape
(Brassica napus), Planta, 228 (2): 331-340 http://dx.doi.org/10.1007/
s00425-008-0740-2
Everett N.P., 1994, Design of antifungal peptides for agricultural
applications, in, ACS Symposium Series, ACS Publications. pp. 278-
278
Ganapathi T., Ghosh S., Laxmi N., and Bapat V., 2007, Expression of an
antimicrobial peptide (MSI-99) confers enhanced resistance to
Aspergillus niger
in transgenic potato, Indian Journal of Biotechnology,
6 (1): 63
Ganapathi T., Higgs N., Balint-Kurti P., Arntzen C., May G., and Van Eck J.,
2001,
Agrobacterium
-mediated transformation of embryogenic cell
suspensions of the banana cultivar Rasthali (AAB), Plant cell reports,
20 (2): 157-162 http://dx.doi.org/10.1007/s002990000287
Guo X., and Stotz H.U., 2007, Defense against Sclerotinia sclerotiorum in
Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene
signaling, Molecular Plant-Microbe Interactions, 20 (11): 1384-1395
http://dx.doi.org/10.1094/MPMI-20-11-1384
Hong Y.-b., Liu S.-p., Zhu Y.-p., Xie C., Jue D.-w., Chen M., Kaleri H.A.,
and Yang Q., 2012, Expression of the
MSI-99m
gene in transgenic
potato plants confers resistance to phytophthora infestans and ralstonia
solanacearum, Plant Molecular Biology Reporter: 1-7
Hu J., Nakatani M., Lalusin A.G., Kuranouchi T., and Fujimura T., 2003,
Genetic analysis of sweetpotato and wild relatives using inter-simple
sequence repeats (ISSRs), Breeding science, 53 (4): 297-304 http://dx.
doi.org/10.1270/jsbbs.53.297
Maloy W.L., and Kari U.P., 2004, Structure–activity studies on magainins
and other host defense peptides, Biopolymers, 37 (2): 105-122 http://dx.
doi.org/10.1002/bip.360370206
May G.D., Afza R., Mason H.S., Wiecko A., Novak F.J., and Arntzen C.J.,
1995, Generation of transgenic banana (
Musa acuminata
) plants via
Agrobacterium
-mediated transformation, Nature biotechnology, 13 (5):
486-492 http://dx.doi.org/10.1038/nbt0595-486
Momoh E., Zhou W., and Kristiansson B., 2002, Variation in the develo-
pment of secondary dormancy in oilseed rape genotypes under
conditions of stress, Weed Research, 42 (6): 446-455 http://dx.doi.org/
10.1046/j.1365-3180.2002.00308.x
Murashige T., and Skoog F., 1962, A revised medium for rapid growth and
bio assays with tobacco tissue cultures, Physiologia plantarum, 15 (3):
473-497 http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
O’Callaghan M., Gerard E.M., Bell N.L., Waipara N.W., Aalders L.T., Baird
D.B., and Conner A.J., 2008, Microbial and nematode communities
associated with potatoes genetically modified to express the
antimicrobial peptide magainin and unmodified potato cultivars, Soil
Biology and Biochemistry, 40 (6): 1446-1459 http://dx.doi.org/10.
1016/j.soilbio.2007.12.028
Rao A.G., 1995, Antimicrobial peptides, Mol. Plant-Microbe Interact, 8 (6):
13
Srivastava V., Vasil V., and Vasil I., 1996, Molecular characterization of the
fate of transgenes in transformed wheat (
Triticum aestivum
L.), TAG
Theoretical and Applied Genetics, 92 (8): 1031-1037 http://dx.doi.
org/10.1007/BF00224045
Verma S.S., Yajima W.R., Rahman M.H., Shah S., Liu J.-J., Ekramoddoullah
A.K., and Kav N.N., 2012, A cysteine-rich antimicrobial peptide from
Pinus monticola (PmAMP1) confers resistance to multiple fungal
pathogens in canola (
Brassica napus
), Plant molecular biology, 79
(1-2): 61-74 http://dx.doi.org/10.1007/s11103-012-9895-0
Vidal J.R., Kikkert J.R., Malnoy M.A., Wallace P.G., Barnard J., and Reisch
B.I., 2006, Evaluation of transgenic ‘Chardonnay’(
Vitis vinifera
)
containing magainin genes for resistance to crown gall and powdery
mildew, Transgenic research, 15 (1): 69-82 http://dx.doi.org/10.1007/
s11248-005-4423-5
Wang Z., Mao H., Dong C., Ji R., Cai L., Fu H., and Liu S., 2009,
Overexpression of
Brassica napus
MPK4 enhances resistance to
sclerotinia sclerotiorum in oilseed rape, Molecular Plant-Microbe
Interactions, 22 (3): 235-244 http://dx.doi.org/10.1094/MPMI-
22-3-0235
Zasloff M., 1987, Magainins, a class of antimicrobial peptides from
Xenopus skin: isolation, characterization of two active forms, and
partial cDNA sequence of a precursor, Proceedings of the National
Academy of Sciences, 84 (15): 5449-5453 http://dx.doi.org/10.1073/
pnas.84.15.5449
Zasloff M., 1988, Magainins, a class of antimicrobial peptides from
Xenopus skin: Isolation, characterization of two active forms, and
partial cDNA sequence of a precursor, Journal of Ethnopharmacology,
23 (2–3): 360 http://dx.doi.org/10.1016/0378-8741(88)90095-5