Page 9 - Molecular Soil Biology

Basic HTML Version

Molecular Soil Biology (online), 2011, Vol. 2 No.2, 9
-
14
ISSN1925-2005
http://msb.sophiapublisher.com
- 14 -
supplemented with different concentrations of AlCl
3
,
NaCl, H
2
O
2
, pH, sorbitol, KCl, MgCl
2
, FeCl
3
, MnCl
2
,
ZnCl
2
, CaCl
2
, CuCl
2
, CdCl
2
, NiSO
4
, BaCl
2
and CoCl
2
as indicated. The yeast transformant of pAUR123
empty vector was used as a control, growth were
monitored for 3~7 d at 30
.
Authors’ contributions
MHZ, XXZ and LYW designed and conducted this experiments; LHD, BS
and TT participated the experiment design and data analysis; SKL is the
person who takes charge of this project, including experiment design, data
analysis, writing and modifying of the manuscript. All authors have read
and approved the final manuscript.
Acknowledgements
This work was supported by the Heilongjiang Provincial Program for
Distinguished Young Scholars (JC200609) and State Forestry
Administration 948 Program of PR China (No. 2008429) to Shenkui Liu.
Authors appreciate two anonymous reviewers for their useful critical
comments and revising advice to this paper. And also we mentioned some
reagent suppliers and sequencing service providers in this work, that doesn’t
mean we would like to recommend or endorse their products and services.
References
Apolloni A., Prior I.A., Lindsay M., Parton R.G., and Hancock J.F., 2000,
H-ras but not K-ras traffics to the plasma membrane through the
exocytic pathway, Mol. Cell. Biol., 20(7): 2475-2487 doi:10.1128/
MCB.20.7.2475-2487.2000 PMid:10713171 PMCid:85443
Boyartchuk V.L., Ashby M.N., and Rine J., 1997, Modulation of Ras and
a-factor function by carboxyl-terminal proteolysis, Science 275(5307):
1796-1800 doi:10.1126/science.275.5307. PMid:9065405
Clarke S., 1992, Protein isoprenylation and methylation at carboxylterminal
cysteine residues, Annu. Rev. Biochem., 61: 355-386 doi:10.1146/
annurev.bi.61.070192.002035 PMid:1497315
Cutler S., Ghassemian M., Bonetta D., Cooney S., and McCourt P., 1996, A
protein farnesyl transferase involved in abscisic acid signal
transduction in Arabidopsis, Science, 273(5279): 1239-1241 doi:
10.1126/science.273.5279.1239 PMid:8703061
Johnson C.D., Chary S.N., Chernoff E.A., Zeng Q., Running M.P., and
Crowell D.N., 2005, Protein geranylgeranyltransferase I is involved in
specific aspects of abscisic acid and auxin signaling in Arabidopsis,
Plant Physiology, 139(2): 722-733 doi:10.1104/pp.105.065045 PMid:1
6183844 PMCid:1255991
Galichet A., Gruissem W., 2003, Protein farnesylation in plants-conserved
mechanisms but different targets, Curr. Opin. Plant Biol, 6(6): 530-535
doi:10.1016/j.pbi.2003.09.005 PMid:14611950
Bracha K., Lavy M., and Yalovsky S., 2002, The Arabidopsis AtSTE24 is a
CAAX protease with broad substrate specificity, The Journal of
Biological Chemistry, 277(33): 29856-29864 doi:10.1074/jbc. M20291
6200 PMid:12039957
Kochian L.V., Hoekenga O.A., and Piñeros, M.A., 2004, How do crop
plants tolerate acid soils? Mechanisms of aluminum tolerance and
phosphorus efficiency, Annu. Rev. Plant Biol., 55: 459-493 doi:
10.1146/annurev.arplant.55.031903.141655 PMid:15377228
Matsumoto H., 2000, Cell biology of aluminum toxicity and tolerance in
higher plants, Int. Rev. Cytol., 200: 1-46 doi:10.1016/S0074- 7696(00)
00001-2
Hoekenga O.A., Maron L.G., Piñeros M.A., Cancado G.M.A., Shaff J.,
Kobayashi Y., Ryan P.R., Dong B., Delhaize E., Sasaki T., Matsumoto
H., Yamamoto Y., Koyama H., and Kochian L.V., 2006, AtALMT1,
which encodes a malate transporter, is identified as one of several
genes critical for aluminum tolerance in Arabidopsis, PNAS, 103(25):
9738-9743 doi: 10.1073/pnas.0602868103 PMid:16740662 PMCid:
1480476
Pei Z.M., Ghassemian M., Kwak C.M., McCourt P., and Schroeder J.I.,
1998, Role of farnesyltransferase in ABA regulation of guard cell
anion channels and plant water loss, Science, 282(5387): 287-290
doi:10.1126/science.282.5387.287 PMid:9765153
Romano J.D., Schmidt W.K., and Michaelis S., 1998, The Saccharomyces
cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the
endoplasmic reticulum membrane, Mol. Biol. Cell, 9(8): 2231-2247
PMid:9693378 PMCid:25475
Running M.P., Lavy M., Sternberg H., Galichet A., Gruissem W., Hake S.,
Ori N., and Yalovsky S., 2004, Enlarged meristems and delayed
growth in plp mutants result from lack of CaaX prenyltransferases,
Proc. Natl. Acad. Sci. U.S.A., 101(20): 7815-7820 doi:10.1073/
pnas.0402385101 PMid:15128936 PMCid:419689
Satoshi I., Koyama H., Iuchi A., Kobayashi Y., Kitabayashi S., Kobayashi
Y., Ikka T., Hirayama T., Shinozaki K., and Kobayashi M., 2007, Zinc
finger protein STOP1 is critical for proton tolerance in Arabidopsis and
coregulates a key gene in aluminum tolerance, PNAS, 104(23):
9900-9905 doi:10.1073/pnas.0700117104 PMid:17535918 PMCid:
1887543
Schmidt W.K., Tam A., Fujimura-Kamada K., and Michaelis S., 1998,
Endoplasmic reticulum membrane localization of Rce1p and Ste24p,
yeast proteases involved in carboxyl-terminal CAAX protein
processing and amino-terminal a-factor cleavage, Proc. Natl. Acad. Sci.
U.S.A., 95(19): 11175-11180 doi:10.1073/pnas.95.19.11175
Young S.G., Ambroziak P., Kim E., and Clarke S., 2001, 7 postprenylation
protein processing: CXXX (CaaX) endoproteases and isoprenylcyteine
carboxyl methyltransferase, The Enzymes, 21: 155-213 doi:10.1016/
S1874-6047(01)80020-2
Kobayashi Y., Hoekenga O.A, Itoh H., Nakashima M., Saito S., Shaff J.E.,
Maron L.G., Piñeros M.A., Kochian L.V., and Koyama H., 2007,
Characterization of AtALMT1 expression in aluminum-Inducible
malate release and its role for rhizotoxic stress tolerance in Arabidopsis,
Plant Physiology, 145(3): 843-852 doi:10.1104/pp.107.102335 PMid:
17885092 PMCid:2048794