Page 11 - Molecular Plant Breeding

Basic HTML Version

Molecular Plant Breeding 2011, Vol.2, No.15, 101
-
108
http://mpb.sophiapublisher.com
107
still theoretical in improving crop photosynthetic
efficiency and increasing yield via the modification of
RuBisCo. Therefore, further exploration of RuBisCo
natures and molecular characteristics are indispen-
sable to lay a solid foundation of enhancing crop
RuBisCo catalytic efficiency and increasing the
photosynthetic output, for instance, the diversity of
RuBisCo structures and functions among different
plants, environmental regulations and active
mechanisms, and the relationship of protein structures
and functions.
Author Contributions
BJZ and LGL have finished the paper, XXZ, SY, RLL, DWL, YYN, YBZ,
QGL and YHW also read the manuscript and revised it. All authors had read
and consented the final text.
Acknowledgements
We thank two anonymous reviewers for their help in preparation of
manuscript.
References
Alcschul S.F., Madden T.L., Schffer A.A., Zhang J.H., Zhang Z., Miller W.,
and Lipman D.J., 1997, Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs, Nucleic Acids Res.,
25(17): 3389-3402 http://dx.doi.org/10.1093/nar/25.17.3389 PMid:9254694
PMCid:146917
Andersson I., Knight S., Schneider G., Schneider G.,Lindqvist Y., Lundqvist T.,
Brändén C.I., and Lorimer G.H., 1989, Crystal structure of the active site
of ribulose-1,5- bisphosphate carboxylase, Nature, 337(19): 229-234
http://dx.doi.org/10.1038/337229a0
Bainbridge G., Anralojc P.J., Madgwick P.J., Pitts J.E., and Parry M.A., 1998,
Effect of mutation of lysine-128 of the large subunit of ribulose
bisphosphate carboxylase/oxygenase from
Anacystis nidulans
, Biochem J,
336(Pt2): 387-393 PMid:9820816 PMCid:1219883
Bausher M.G., Singh N.D., Lee S.B., Jansen R.K., and Daniell H., 2006, The
complete chloroplast genome sequence of
Citrus sinensis
(L.)
Osbeck
var
'Ridge Pineapple: organization and phylogenetic relationships to other
angiosperms, BMC Plant Biol., 6: 21-30 http://dx.doi.org/10.1186/
1471-2229-6-21 PMid:17010212 PMCid:1599732
Bendtsen J.D., Nielsen H., von Heijne G., and Brunak S., 2004, Improved
prediction of signal peptides: SignalP 3.0, J. Mol. Biol., 340(4): 783-795
http://dx.doi.org/10.1016/j.jmb.2004.05.028 PMid:15223320
Chang C.C., Lin H.C., Lin I.P., Chow T.Y., Chen H.H., Chen W.H., Cheng
C.H., Lin C.Y., Liu S.M., Chang C.C., and Chaw S.M., 2006, The
chloroplast genome of
Phalaenopsis aphrodite
(Orchidaceae):
comparative analysis of evolutionary rate with that of grasses and its
phylogenetic implications, Mol. Biol. Evol., 23(2): 279-291 http://dx.
doi.org/10.1093/molbev/msj029 PMid:16207935
Chen Z., Chastain J.C., Alabed S.R., Chollet R., and Spreitzer R.J., 1988,
Reduced CO
2
/O
2
specificity of ribulose-bisphosphate carboxylase/
oxygenase in a temperature-sensitive chloroplast mutant of
Chlamydomonas, PNAS, 85: 4696-4699 http://dx.doi.org/10.1073/pnas.
85.13.4696
Chen Z., Seokjoo H., and Robert J.S., 1993, Thermal instability of
ribulose-l,5-bisphosphate carboxylase/oxygenase from a temperature-
conditional chloroplast mutant of Chlamydomonas reinhardtii, Plant
Physiol., 101: 1189-1194 PMid:12231772 PMCid:160638
Ellis R.J., 1987, Protein as molecular chaperons, Nature, 328: 378-379
http://dx.doi.org/10.1038/328378a0 PMid:3112578
Geourjon C., and Deléage G., 1995, SOPMA: Significant improvement in
protein secondary structure prediction by consensus prediction from
multiple alignments, Comput. Appl. Biosci., 11(6): 681-684
PMid:8808585
Guo H., Wang W., Yang N., Guo B.L., Zhang S., Yang R.J., Yuan Y., Yu J.L.,
Hu S.N., and Sun Q.S., 2010, DNA barcoding provides distinction
between Radix Astragali and its adulterants, Science China Life Science,
53(8): 992-999 http://dx.doi.org/10.1007/s11427-010-4044-y PMid:
20821298
Higgins D.G., Sharp P.M., 1988, CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer, Gene, 73: 237-244
http://dx.doi.org/10.1016/0378-1119(88)90330-7
Higgins D.G., and Sharp P.M., 1989, Fast and sensitive multiple sequence
alignments on a microcomputer, CABIOS, 5: 151-153 PMid:2720464
Hiratsuka J., Shimada H., Whittier R., Ishibashi T., Sakamoto M., Mori M.,
Kondo C., Honji Y., Sun C.R., and Meng B.Y., 1989, The complete
sequence of the rice (
Oryza sativa
) chloroplast genome: intermolecular
recombination between distinct tRNA genes accounts for a major plastid
DNA inversion during the evolution of the cereals, Mol. Gen. Genet.,
217(2-3): 185-194 http://dx.doi.org/10.1007/BF02464880
Ikeda M., Arai M., and Lao D.M., 2002, Transmembrane topology prediction
methods: A reassessment and improvement by a consensus method using
a dataset of experimentally characterized transmembrane topologics, In
Silico Biol., 2(1): 19-33 PMid:11808871
Jeanmougin F., Thompson J.D, and Gouy M., 1998, Multiple sequence
alignment with ClustalX, Trends Biochem. Sci., 23: 403-405 http://
dx.doi.org/10.1016/S0968-0004(98)01285-7
Kitano K., Maeda N., Fukui T., Atomi K., Imanaka T., and Miki K., 2001,
Crystal structure of a novel type archaeal rubisco with pentagonal
symmetry, Structure, 9(6): 473-481 http://dx.doi.org/10.1016/S0969-
2126(01)00608-6
Kyce J., and Doolittle R.F., 1982, A simple method for displaying the
hydropathic character of a protein, J. Mol. Biol., 157(6): 105-132
PMid:7108955
Li Y.S., Li D.M., and Zhu Y.G., 2001, Progresses of molecular biology for
super high yield in rice (in Chinese with English abstract), Research of
Agricultural Modernization, 22(5): 283-288
Mann C.C., 1999, Genetic engineers aim to soup up crop photosynthesis,
Science, 283(5400): 314-316 http://dx.doi.org/10.1126/science.283.5400.
314 PMid:9925484
Maier R.M., Neckermann K., Igloi G.L., and Kössel H., 1995, Complete
sequence of the maize chloroplast genome: gene content, hotspots of
divergence and fine tuning of genetic information by transcript editing, J.
Mol. Biol., 251(5): 614-628 http://dx.doi.org/10.1006/jmbi.1995.0460
PMid:7666415
Nielsen H., Engelbrecht J., Brunak S., and Heijne G., 1997, Identification of
prokaryotic and eukaryotic signal peptides and prediction of their
cleavage sites, Protein Engineering, 10(1): 1-6 http://dx.doi.org/
10.1093/protein/10.1.1
Ohyama K., Fukuzawa H., Kohchi T., Shirai H., Sano T., Sano S., UmesonoK.,
Shiki Y., Takeuchi M., Chang Z., Aota S.I., InokuchiH., and Ozeki H.,
1986, Chloroplast gene organization deduced from complete sequence of
liverwort
Marchantia polymorpha
chloroplast DNA, Nature, 322:
572-574 http://dx.doi.org/10.1038/322572a0
Ohyama K., Fukuzawa H., Kohchi T., Sano T., Sano S., Shirai H., Umesono K.,
Shiki Y., Takeuchi M., Aota Z.C.S., Inokuchi H., and Ozeki H., 1988,
Structure and organization of
Marchantia polymorpha
chloroplast
genome. I. Cloning and gene identification, J. Mol. Biol. 203(2): 281-298
http://dx.doi.org/10.1016/0022-2836(88)90001-0
Parry M.A.J., Madgwick P.J., Carvahlo J.F.C., Andralojc P.J., 2007, Prospects
for increasing photosynthesis by overcoming the limitations of Rubisco, J.
Agric. Sci., 145(1): 31-43 http://dx.doi.org/10.1017/S0021859606006666
Pippa J.M., Saroj P., and Martin A.J.P., 1998, Effect of mutations of residue