Molecular Plant Breeding 2011, Vol.2, No.10, 68
-
74
http://mpb.sophiapublisher.com
73
3.2 Extraction and detection of water-soluble
oligosaccharides
Whole wheat flour (0.1000 g) was accurately weighed
before extraction of water-soluble oligosaccharides in
5 ml double-distilled water for 10 h at 4°C. The
samples were then subjected to ultrasonic extraction
for 30 min and centrifuged at 4 500 r/min for 30 min.
Supernatants were filtered with C18
-
SPE and 0.45
µm
filter paper.
Water-soluble saccharide content was determined by
high-pressure liquid chromatography (HPLC) with a
Waters 515 pump and refractive index detector
(Waters 2410, USA) (Zhu and Yang, 2005). Com
pounds were separated on a 4.6×250 mm Inertsil NH2
column (Dikma, Japan) with the mobile phase
consisting of 25% water and 75% acetonitrile (flow
rate, 1 mL/min). The column temperature was 40°C.
3.3 QTL analysis
The water-soluble saccharide content data and the
linkage map of the Sh Ch population, which were
reported previously (Li et al., 2007), were used for
QTL analysis. This map included 381 loci on all the
wheat chromosomes, comprising 167 SSR, 94
EST-SSR, 76 ISSR, 26 SRAP, 15 TRAP, and 3 Glu
loci, and covering 3 636.7 cM with an average distance
of 14.8 cM between markers. QTL mapping was
conducted using QTLMapper 1.6 based on a mixed-
model (Wang et al., 1999). The walking speed chosen
for all QTLs was 1.0 cM. Additive effects of detected
QTLs were estimated by Bayesian test. A QTL was
considered significant at a LOD peak value 2.5 (Zhao
et al., 2009).
Authors’ contributions
XYF conceived the overall study, performed the experiment designs, carried
out the trait phenotyping, and drafted the manuscript. ZLQ took part to the
data analysis and the writing.SSL obtained and analyzed the QTL data and
was involved in the writing. All authors read and approved the final
manuscript.
Acknowledgements
We thank Shubo Gu (State Key Laboratory of Crop Biology
,
Agronomy
College of Shandong Agriculture University, Tai
’
an, China) for help and
advice on the experiment.
References
Cicek M.S., Chen P., Saghai Maroof M.A., and Buss G.R., 2006, Interrelation
ships among agronomic and seed quality traits in an interspecific
soybean recombinant inbred population, Crop Science, 46(3): 1253-
1259 doi:10.2135/cropsci2005.06-0162
de Koeyer D.L., Tinker N.A., Wight C.P., Deyl J., Burrows V.D., O’Donoughue
L.S., Lybaert A., Molnar S.J., Armstrong K.C., Fedak G., Wesenberg
D.M., Rossnagel B.G., and McElroy A.R., 2004, A molecular linkage
map with associated QTLs from a hulless covered spring oat population,
Theor. Appl. Genet., 108(7): 1285-1298 doi:10.1007/s00122-003-1556-x
PMid:14767596
Doerge R.W., 2002, Mapping and analysis of quantitative trait loci in
experimental populations, Nat. Rev. Genet., 3: 43-52 doi:10.1038/nrg703
PMid:11823790
Han F., Clancy J.A., Jones B.L., Wesenberg D.M., Kleinhofs A., and Ullrich
S.E., 2004, Dissection of a malting quality QTL region on chromosome
1 of barley, Molecular Breeding, 14(3): 339-347 doi:10.1023/B:MOLB.
0000049215.53864.e3
Han F., Ullrich S.E., Kleinhofs A., Jones B.L., Hayes P.M., and Wesenberg
D.M., 1997, Fine structure mapping of the barley chromosome
-
1
centromere region containing malting-quality QTLs, Theoretical and
Applied Genetics, 95(5): 903-910 doi:10.1007/s001220050641
Hayes P.M., Blake T., Chen T.H., Tragoonrung S., Chen F., Pan A., and Liu
B., 1993, Quantitative trait loci on barley (
Hordeum vulgare
L.)
chromosome 7 associated with components of winter hardiness,
Genome, 36(1): 66-71 doi:10.1139/g93-009 PMid:18469970
Huynh B.L., Hugh W., James C.R., Stangoulis., Graham R.D., Willsmore
K.L., and Olson S., and Diane E., 2008, Quantitative trait loci for grain
fructan concentration in wheat (
Triticum aestivum
L.), Theor. Appl.
Genet., 117(5): 701-709 doi:10.1007/s00122-008-0811-6 PMid:1853
6901
Hyeun K.K., Kang S.T., and Oh K.W., 2006, Mapping of putative
quantitative trait loci controlling the total oligosaccharide and sucrose
content of
Glycine
max seeds, Plant Research, 119(5): 533-538
doi:10.1007/s10265-006-0004-9 PMid:16941063
Igartua E., Edney M., Rossnagel B.G., Spaner D., Legge W.G., Scoles G.J.,
Eckstein P.E., Penner G.A., Tinker N.A., Briggs K.G., Falk D.E., and
Mather D.E., 2000, Marker-based selection of QTL affecting grain and
malt quality in two-row barley, Crop Science, 40(5): 1426-1433
doi:10.2135/cropsci2000.4051426x
Kaneko T., Yokoyama A., and Suzuki M., 1995, Digestibility characteristics
of isomaltooligosaccharides in comparison with several saccharides
using the rat jejunum loop method, Bioscience Biotechnology and
Biochemistry, 59(7): 1190-1194 doi:10.1271/bbb.59.1190 PMid:767
0176
Li S.S., Jia J.Z., Wei X.Y., Zhang X.C., Li L.Z., Chen H.M., Fan Y.D., Sun
H.H., Zhao X.H., Lei T.T., Xu Y.F., Jiang F.S., Wang H.W., and Li
L.H., 2007, A intervarietal genetic map and QTL analysis for yield
traits in wheat, Molecular Breeding, 20(2): 167-178 doi:10.1007/
s11032-007-9080-3
Liu M., Xiao D.G., and Dai L.X., 2001, Study on the high-sugar-tolerant
baker's yeast, Food and Fermentation Industries, 27(5): 12-16
Sun H.Y., Lv J.H., Fan Y.D., Zhao Y., Kong F.M., Li R.J., Wang H.G., and
Li S.S., 2008, Quantitative trait loci (QTLs) for quality traits related to
protein and starch in wheat, Progress in Natural Science, 18(7):
825-831 doi:10.1016/j.pnsc.2007.12.013
Sun X.Y., Wu K., Zhao Y., Kong F.M., Han G.Z., Jiang H.M., Huang X.J.,
Li R.J., Wang H.G., and Li S.S., 2009, QTL analysis of kernel shape
and weight using recombinant inbred lines in wheat, Euphytica, 165(3):
615–624 doi:10.1007/s10681-008-9794-2
Xie X.H., LI X.F., Xiao X., and Liu Z.X., 2009, Effect of sugars on
rheological properties of rice starch, Fujian Nongye Xuebao (Fujian
Journal of Agricultural Sciences), 24(5): 475-477
Wang D.L., Zhu J., Li Z.K., and Paterson A.H., 1999, Mapping QTLs with
epistatic effects and QTL environment interactions by mixed linear
model approaches, Theor. Appl. Genet., 99(7): 1255-1264 doi:10.1007/
s001220051331
Zhang L., Dong S.T., Liu C.H., Wang K.J., Zhang J.W., and Liu P., 2007,