Page 13 - Molecular Plant Breeding

Basic HTML Version

Molecular Plant Breeding 2010, Vol.1 No.1
http://mpb.sophiapublisher.com
Page 10 of 10
Bernacchi D., Beck-Bunn T., Emmatty D., Eshed Y., Inai S., Lopez J.,
Petiard V., Sayama H., Uhlig J., Zamir D., and Tanksley S. D., 1998
b
,
Advanced backcross QTL analysis of tomato II. Evaluation of
near-isogenic lines carrying single-donor introgressions for desirable
wild QTL-alleles derived from
Lycopersicon hirsutum
and
L.
pimpinellifolium
, Theor. Appl. Genet, 97: 170-180
Bernacchi D., Beck-Bunn T., Eshed Y., Lopez J., Petiard V., Uhlig J., Zamir
D., and Tanksley S. D., 1998a,Advanced backcross QTL analysis in
tomato l . Identification of QTLs for traits of agronomic importance
from Lycopersicon hirsutum, Theor. Appl. Genet, 97: 381-397
Blair, Iriarte M. W., and G Beebe S., 2006, QTL analysis of yield traits in
an advanced backcross population derived from a cultivated Andean x
wild common bean (
Phaseolus vulgaris
L.)cross, Theor. Appl. Genet,
112(6): 1149-1163
Cai H. W., and Morishima H., 2002, QTL clusters reflect character
associations in wild and cultivated rice, Theor. Appl. Genet, 104:
1217-1228
Chen X., Temnynkh S., Cho T. G., and McCouch S. R., 1997, Development
of a microsatellite map providing genome-wide coverage in rice (
Oryza
sativa
L.), Theor. Appl. Genet, 95, 553-56
Cary, 1992, SAS. SAS/STAT User’s Guide Release 8.2. SAS Institute Inc.
DeVicente M. C., and Tanksley S. D., 1993, QTL analysis of transgressive
segregation in an interspecific tomato cross, Genetics, 134: 585-596
Eshed Y., and Zamir D., 1994, Introgressions from Lycopersicon pennellii can
improve the soluble-solids yield of tomato hybrids, Theor. Appl. Genet, 88:
891-897
Frey K. J., Cox T. S., Rodgers D. M., and Cox P. B., 1983, Increasing cereal
yields with genes from wild and weedy species. In: Proc.15th
International Genetics Congress, New Delhi, India, 12,19–21, Oxford and
IBH publishing Co.,New Delhi, India, pp.51-68
Jiang G. H., Xu C. G., Li X. H., and He Y. Q., 2004, Characterization of the
genetic basis for yield and its component traits of rice revealed by
doubled haploid population. Acta genetica Sinica, 31: 63-72
Kobayashi S., Fukuta Y., Sato T., Osaki M., Khush G. S., 2003,Molecular
marker dissection of rice (
Oryza sativa
L.) plant architecture under
temperate and tropical climates, Theor. Appl. Genet., 107: 1350-135
Lander E. S., Green P., Abrahmson J., Barloe A., Daly M. J., Lincoln S. E.,
and Newburg L., 1987, MAPMAKER: an interactive computer
package for constructing primary linkage maps of experimental and
natural populations, Genomics, 1: 174-181
Lee S. J., Oh C. S., Suh J. P., McCouch S. R., and Ahn S. N., 2005,
Identification of QTLs for domestication-related and agronomic traits
in an Oryza sativa×O. rufipogon BC1F7 population, Plant Breeding,
124: 209-219
Li C., Pan D. J., Mao X. X., Tu C. Y., Zhou H. Q., Fan Z. L., and Li X. F..
2006, The genetic diversity of gaozhou wild rice analyzed by SSR,
Chinese Science Bulletin, 51(5): 562-572
Lu C., Shen L., Tan Z., Xu Y., He P., Chen Y., and Zhu L.,
1996,Comparative mapping of QTLs for agronomic traits of rice across
environments using a doubled haploid population, Theor. Appl. Genet.,
93: 1211-1217
McCouch S. R., Teytelman L., Xu Y., Lobos K. B., Clare K., Walton B., Fu
B., Maghirang R., Li Z., Xing Y., Zhang Q., Kono Yano I. M.,
Fjellstrom R., DeClerck G., Schneider D., Cartinhour S., Ware D., and
Stein L., 2002, Development and mapping of 2240 new SSR markers for
rice (
Oryza sativa L
), DNARes, 9: 199-207
McCouch S. R., Cho Y. G., Yano M., Paul E., Blinstrub M., Morishima H.,
and Kinoshita T., 1997, Suggestion for QTL nomenclature, Rice
Genetics Newsletters, 14: 11-13
Moncada P., Martinez C. P., Borrero J., Chatel M., Gauch H. Jr., Guimaraes
E., Tohme J., and McCouch S. R., 2001,Quantitative trait loci for yield
and yield components in an
Oryza sativa×Oryza rufipogon
BC
2
F
2
population evaluated in an upland environment, Theor. Appl. Genet,
102
:
41-52
Pradeep M., Sarla N., Laxminarayana V. R., and Siddiq E. A., 2005,
Identification and mapping of yield and yield related QTLs from an
Indian accession of
Oryza rufipogon
. BMC Genet, 6(1), 33
Septiningsih E. M., Prasetiyono J., Lubis E., Tai T. H., Tjubaryat T.,
Moeljopawiro S., and McCouch S. R., 2003a, Identification of
quantitative trait loci for yield and yield components in an advanced
backcross population derived from the Oryza sativa variety IR64 and
the wild relative O. rufipogon, Theor. Appl. Genet, 107: 1419-1432
Sun C. Q., Wang X. K., Li Z. C., Yoshimura A., and Iwata N., 2001,
Comparison of the genetic of common wild rice (
Oryza rufipogon
Griff.) and cultivated rice (
O.Sativa
L.) using RFLP makers, Theor.
Appl. Genet, 102: 157-162
Tan Y. F., Xing Y. Z., Li J. X ., Yu S. B., Xu. C. G., and Zhang Q. f., 2000,
Genetic bases of appearance quality of rice grains in Shanyou 63, an
elite rice hybrid. Theor. Appl. Genet., 101: 823-829
Tanksley S. D., Grandillo S., Fulton T. M., Zamir D., Eshed Y., Petiard V.,
Lopez J., and Beck-Bunn T., 1996, Advanced backcross QTL analysis
in a cross between an elite processing line of tomato and its wild
relative pimpinellifolium, Theor. Appl. Genet, 92: 213-224
Temnykh S., Park W. D., Ayres N., Cartinhour S., Hauck N., Lipovich L.,
Cho Y. G., Ishii T., and McCouch S. R., 2000, Mapping and genome
organization of microsatellite sequences in rice (Oryza sativa L.),
Theor. Appl. Genet, 100: 697-712
Temnykh S., DeClerck G., Lukashova A., Lipovich L., Cartinhour S., and
McCouch S., 2001,Computational and experimental analysis of
microsatellites in rice (
Oryza sativa
L.): frequency, length variation,
transposon associations, and genetic marker potential, Genome Res, 11:
1441-1452
Thomson M. J., Tai T. H., McClung A. M., Lai X. H., Hinga M. E., Lobo K.
B., Xu Y., Martínez R., and McCouch S. R., 2003, Mapping
quantitative trait loci for yield, yield components and morphological
traits in an advanced backcross population between
Oryza rufipogon
and the
Oryza sativa
cultivar Jefferson, Theor. Appl. Genet, 107:
479-493
Tian F., Li D. J., Fu Q., Zhu Z. F., Fu Y. C., Wang X. K., and Sun C. Q.,
2006, Construction of introgression lines carrying wild rice (Oryza
rufipogon Griff.) segments in cultivated rice (
O. sativa
L.) background
and characterization of introgressed segments associated with
yield-related traits, Theor. Appl. Genet, 112: 570-580
Wang S., Basten C. J., and Zeng Z. B., 2007, Windows QTL Cartographer
2.5. Department of Statistics North.Carolina State University, Raleigh,
NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
Wade M J, and Epistasis., 2001,complex traits and mapping genes, Genetica,
112-113
Xiao J., Grandillo S., Ahn S. A., McCouch S. R., Tanksley S. D., Li J., and
Yuan L., 1996, Genes from wild rice improve yield, Nature, 384:
223-224
Xiao J., Li J., Grandillo S., Ahn S. N., Yuan L., Tanksley S. D., and
McCouch S. R., 1998, Identification of trait-improving quantitative
trait loci alleles from a wild rice relative, Oryza rufipogon, Genetics,
150: 899-909
Xiong L. Z., Liu K. D., Dai X. K., Xu C. G., and Zhang Q., 1999,
Identification of genetic factors controlling domestication-related traits
of rice using an F2 population of a cross between
Oryza sativa
and
O.
rufipogon
, Theor. Appl. Genet, 98: 243-251