ME_2025v16n1

Molecular Entomology, 2025, Vol.16, No.1, 39-49 http://emtoscipublisher.com/index.php/me 49 Li Q., Wyckhuys K., Khashaveh A., Zhou Y., Zhang H., Wu K., and Liu D., 2023, Long-term insect censuses capture progressive loss of ecosystem functioning in East Asia, Science Advances, 9(5): eade9341. https://doi.org/10.1126/sciadv.ade9341 Lin X., Zhang Z., Wang J., Yuan X., He T., Gao H., Zhang H., Yang B., and Liu Z., 2024, Akt-FoxO signaling drives co-adaptation to insecticide and host plant stresses in an herbivorous insect, Journal of Advanced Research, 75: 53-64. https://doi.org/10.1016/j.jare.2024.11.006 McCulloch G.A., and Waters J.M., 2023, Rapid adaptation in a fast-changing world: emerging insights from insect genomics, Global Change Biology, 29(4): 943-954. https://doi.org/10.1111/gcb.16512 Mpisane K., Kganyago M., Munghemezulu C., Price R., and Nduku L., 2025, A systematic review of remote sensing technologies and techniques for agricultural insect pest monitoring: lessons for Locustana pardalina (brown locust) control in South Africa, Frontiers in Remote Sensing, 6: 1571149. https://doi.org/10.3389/frsen.2025.1571149 Onstad D., Gassmann A., and Pittendrigh B., 2009, Evolutionary analysis of herbivorous insects in natural and agricultural environments, Pest Management Science, 65(11): 1174-1181. https://doi.org/10.1002/ps.1844 Salem H., Moseyko A., García-Lozano M., Riley E., Okamura Y., Vencl F., Kirsch R., Montagna M., Windsor D., Pauchet Y., Fukatsu T., Weiss B., Fukumori K., Ślipiński A., Keller J., Vogel H., Kaltenpoth M., and Konstantinov A., 2025, Symbiosis and horizontal gene transfer promote herbivory in the megadiverse leaf beetles, Current Biology, 35: 640-654.e7. https://doi.org/10.1016/j.cub.2024.12.028 Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., and Nelson A., 2019, The global burden of pathogens and pests on major food crops, Nature Ecology & Evolution, 3(3): 430-439. https://doi.org/10.1038/s41559-018-0793-y Schwander T., Larose C., and Rasmann S., 2019, Evolutionary dynamics of specialisation in herbivorous stick insects, Ecology Letters, 22(2): 354-364. https://doi.org/10.1111/ele.13197 Skidmore I., and Hansen A., 2017, The evolutionary development of plant-feeding insects and their nutritional endosymbionts, Insect Science, 24(6): 910-928. https://doi.org/10.1111/1744-7917.12463 Tooker J., and Giron D., 2020, The evolution of endophagy in herbivorous insects, Frontiers in Plant Science, 11: 581816. https://doi.org/10.3389/fpls.2020.581816 Wyckhuys K.A., Pozsgai G., Fekih I.B., Sanchez-Garcia F.J., and Elkahky M., 2024, Biodiversity loss impacts top-down regulation of insect herbivores across ecosystem boundaries, Science of the Total Environment, 930: 172807. https://doi.org/10.1016/j.scitotenv.2024.172807 Xue Y., Wang Y., Chen J., Zhang G., Liu W., Wan F., and Zhang Y., 2024, Disparities in genetic diversity drive the population displacement of two invasive cryptic species of the Bemisia tabaci complex in China, International Journal of Molecular Sciences, 25(14): 7966. https://doi.org/10.3390/ijms25147966 Yang F., Wang Z., and Kerns D.L., 2022, Resistance of Spodoptera frugiperda to Cry1, Cry2, and Vip3Aa proteins in Bt corn and cotton in the Americas: implications for the rest of the world, Journal of Economic Entomology, 115(6): 1752-1760. https://doi.org/10.1093/jee/toac099 Zeng B., Zhang F., Liu Y.T., Wu S.F., Bass C., and Gao C.F., 2023, Symbiotic bacteria confer insecticide resistance by metabolizing buprofezin in the brown planthopper, Nilaparvata lugens (Stål), PLoS Pathogens, 19(12): e1011828. https://doi.org/10.1371/journal.ppat.1011828 Ziesche T.M., Ordon F., Schliephake E., and Will T., 2024, Long-term data in agricultural landscapes indicate that insect decline promotes pests well adapted to environmental changes, Journal of Pest Science, 97(3): 1281-1297. https://doi.org/10.1007/s10340-023-01698-2

RkJQdWJsaXNoZXIy MjQ4ODYzNA==