Molecular Entomology 2024, Vol.15, No.5, 209-220 http://emtoscipublisher.com/index.php/me 219 Filho F., Heldens W., Kong Z., and Lange E., 2019, Drones: innovative technology for use in precision pest management, Journal of Economic Entomology, 113: 1-25. https://doi.org/10.1093/jee/toz268 Finger R., Swinton S., Benni N.E., and Walter A., 2019, Precision farming at the nexus of agricultural production and the environment, Annual Review of Resource Economics, 11: 313-335. https://doi.org/10.1146/annurev-resource-100518-093929 Hu G., Ye R., Wan M., Bao W., Zhang Y., and Zeng W., 2024, Detection of tea leaf blight in low-resolution UAV remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 62: 1-18. https://doi.org/10.1109/TGRS.2023.3339765 Huang D.D., 2024, Molecular mechanisms of tea plant resistance to major pathogens, Molecular Pathogens, 15(1): 30-39. https://doi.org/10.5376/mp.2024.15.0004 Khanna A., Jain S., and Maheshwari P., 2022, Precision agriculture for medicinal plants: a conjunction of technologies, 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 2022: 300-304. https://doi.org/10.1109/ICECTA57148.2022.9990401 Koshariya A., Sharma N., Satapathy S., Thilagam P.A., Laxman T., Rai S., and Singh B., 2023, Safeguarding agriculture: a comprehensive review of plant protection strategies, International Journal of Environment and Climate Change, 13(11): 272-281. https://doi.org/10.9734/ijecc/2023/v13i113168. Li H., Wang Y., Fan K., Mao Y., Shen Y., and Ding Z., 2022, Evaluation of important phenotypic parameters of tea plantations using multi-source remote sensing data, Frontiers in Plant Science, 13: 898962. https://doi.org/10.3389/fpls.2022.898962 Maes W., and Steppe K., 2019, Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture, Trends in Plant Science, 24(2): 152-164. https://doi.org/10.1016/j.tplants.2018.11.007 Micheni E., Machii J., and Murumba J., 2022, Internet of things, big data analytics, and deep learning for sustainable precision agriculture, 2022 IST-Africa Conference (IST-Africa), 2022: 1-12. https://doi.org/10.23919/IST-Africa56635.2022.9845510 Modica G., Messina G., Luca G., Fiozzo V., and Praticò S., 2020, Monitoring the vegetation vigor in heterogeneous citrus and olive orchards, A multiscale object-based approach to extract trees' crowns from UAV multispectral imagery, Computers and Electronics in Agriculture, 175: 105500. https://doi.org/10.1016/j.compag.2020.105500 Müllerová J., Bruña J., Bartalos T., Dvořák P., Vítková M., and Pyšek P., 2017, Timing is important: unmanned aircraft vs. satellite imagery in plant invasion monitoring, Frontiers in Plant Science, 8: 887. https://doi.org/10.3389/fpls.2017.00887 Naresh R., Chandra M.V.S., Charankumar G., Chaitanya J., Alam M., Singh P., and Ahlawat P., 2020, The prospect of artificial intelligence (AI) in precision agriculture for farming systems productivity in sub-tropical India: a review, Current Journal of Applied Science and Technology, 39(48): 96-110. https://doi.org/10.9734/CJAST/2020/V39I4831205 Passias A., Tsakalos K.A., Rigogiannis N., Voglitsis D., Papanikolaou N., Michalopoulou M., Broufas G., and Sirakoulis G., 2023, Comparative study of camera-and sensor-based traps for insect pest monitoring applications, 2023 IEEE Conference on AgriFood Electronics (CAFE), 2023: 55-59. https://doi.org/10.1109/CAFE58535.2023.10291672 Sarangi S., Jain P., Bhatt P.V., Bose Choudhury S., Pal M., Kallamkuth S., Pappula S., and Borah K., 2020, Effective plantation management with crowd-sensing and data-driven insights: a case study on tea, 2020 IEEE Global Humanitarian Technology Conference (GHTC), 2020: 1-8. https://doi.org/10.1109/GHTC46280.2020.9342854 Sawant S., Durbha S., and Adinarayana J., 2017, Interoperable agro-meteorological observation and analysis platform for precision agriculture: a case study in citrus crop water requirement estimation, Computers and Electronics in Agriculture, 138: 175-187. https://doi.org/10.1016/j.compag.2017.04.019 Sharma A., Jain A., Gupta P., and Chowdary V., 2021, Machine learning applications for precision agriculture: a comprehensive review, IEEE Access, 9: 4843-4873. https://doi.org/10.1109/ACCESS.2020.3048415 Sishodia R., Ray R., and Singh S.K., 2020, Applications of remote sensing in precision agriculture: a review, Remote Sensing, 12(19): 3136. https://doi.org/10.3390/rs12193136 Tan Y., Sun J.Y., Zhang B., Chen M., Liu Y., and Liu X.D., 2019, Sensitivity of a ratio vegetation index derived from hyperspectral remote sensing to the brown planthopper stress on rice plants, Sensors, 19(2): 375. https://doi.org/10.3390/s19020375 Thereza N., Saputra I.P.A., and Hamdadi A., 2020, The design of monitoring system of smart farming based on IoT technology to support operational management of tea plantation, 2020 International Conference on Smart Technology and Applications, Atlantis Press, pp.52-57. https://doi.org/10.2991/aisr.k.200424.008 Umrani(Chimanna) A.T., and Aitwade S.A., 2021, Application of machine learning and deep learning in smart agriculture, International Journal of Engineering Applied Sciences and Technology, 6(6): 133-137. https://doi.org/10.33564/ijeast.2021.v06i06.019
RkJQdWJsaXNoZXIy MjQ4ODYzNA==