JMR_2024v14n5

Journal of Mosquito Research, 2024, Vol.14, No.5, 264-275 http://emtoscipublisher.com/index.php/jmr 274 Beck A.S., and Barrett A., 2015, Current status and future prospects of yellow fever vaccines, Expert Review of Vaccines, 14: 1479-1492. https://doi.org/10.1586/14760584.2015.1083430 Campi-Azevedo A.C., Reis L.R., and Peruhype-Magalhães V., 2019, Short-lived immunity after 17DD yellow fever single dose indicates that booster vaccination may be required to guarantee protective immunity in children, Frontiers in Immunology, 10: 2192. https://doi.org/10.3389/fimmu.2019.02192 Chen L., and Wilson M., 2020, Yellow fever control: current epidemiology and vaccination strategies, Tropical Diseases, Travel Medicine and Vaccines, 6(1): 1. https://doi.org/10.1186/s40794-020-0101-0 Croce E., Hatz C., Jonker E.F., Visser L.G., Jaeger V.K., and Bühler S., 2017, Safety of live vaccinations on immunosuppressive therapy in patients with immune-mediated inflammatory diseases, solid organ transplantation or after bone-marrow transplantation, Vaccine, 35(9): 1216-1226. https://doi.org/10.1016/j.vaccine.2017.01.048 Dekevic G., Tertel T., Tasto L., Schmidt D., Giebel B., Czermak P., and Salzig D., 2023, A bioreactor-based yellow fever virus-like particle production process with integrated process analytical technology based on transient transfection, Viruses, 15(10): 2013. https://doi.org/10.3390/v15102013 Domingo C., Fraissinet J., Ansah P., Kelly, C., Bhat N., Sow S.O., and Mejía J.E., 2019, Long-term immunity against yellow fever in children vaccinated during infancy: a longitudinal cohort study. The Lancet. Infectious Diseases, 19(12): 1363-1370. https://doi.org/10.1016/S1473-3099(19)30323-8 Faria N., Kraemer M., Hill S., and Goes de Jesus J., 2018, Genomic and epidemiological monitoring of yellow fever virus transmission potential, Science, 361: 894-899. https://doi.org/10.1126/science.aat7115 Galula J.U., Yang C.Y., Davis B.S., Chang G.J.J., and Chao D.Y., 2018, Cross-reactivity reduced dengue virus serotype 2 vaccine does not confer cross-protection against other serotypes of dengue viruses, bioRxiv, 2018: 480210. https://doi.org/10.1101/480210 Gaythorpe K., Abbas K., Huber J.H., Karachaliou A., Thakkar N., Woodruff K., and Jit M., 2021, Impact of COVID-19-related disruptions to measles, meningococcal A, and yellow fever vaccination in 10 countries, eLife, 10: e67023. https://doi.org/10.7554/eLife.67023 Gershman M.D., Angelo K.M., Ritchey J., Greenberg D.P., Muhammad R.D., Brunette G., Cetron M.S., and Sotir M.J., 2017, Addressing a yellow fever vaccine shortage-united states, 2016-2017, Morbidity and Mortality Weekly Report, 66: 457-459. https://doi.org/10.15585/mmwr.mm6617e2 Hansen C.A., and Barrett A., 2021, The present and future of yellow fever vaccines, Pharmaceuticals, 14(9): 891. https://doi.org/10.3390/ph14090891 Jean K., Hamlet A., Benzler J., Cibrelus L., Gaythorpe K.A.M., and Ferguson N., 2020, Eliminating yellow fever epidemics in Africa: vaccine demand forecast and impact modelling, PLoS Neglected Tropical Diseases, 14(5): e0008304. https://doi.org/10.1371/journal.pntd.0008304 Julander J.G., Testori M., Cheminay C., and Volkmann A., 2018, Immunogenicity and protection after vaccination with a modified vaccinia virus Ankara-vectored yellow fever vaccine in the hamster model, Frontiers in Immunology, 9: 1756. https://doi.org/10.3389/fimmu.2018.01756 Kasturi S.P., Kozlowski P.A., Nakaya H.I., Burger M.C., Russo P., Pham M., and Pulendran B., 2016, Adjuvanting a simian immunodeficiency virus vaccine with toll-like receptor ligands encapsulated in nanoparticles induces persistent antibody responses and enhanced protection, Journal of Virology, 91(4): e01844-16. https://doi.org/10.1128/JVI.01844-16 Lima T., Souza M., and Castilho L., 2019, Purification of flavivirus VLPs by a two-step chromatographic process, Vaccine, 37(47): 7061-7069. https://doi.org/10.1016/J.VACCINE.2019.05.066 Mokaya J., Kimathi D., Lambe T., and Warimwe G., 2021, What constitutes protective immunity following yellow fever vaccination? Vaccines, 9(6): 671. https://doi.org/10.3390/vaccines9060671 Nnaji C., Shey M., Adetokunboh O., and Wiysonge C., 2019, Immunogenicity and safety of fractional dose yellow fever vaccination: a systematic review and meta-analysis, Vaccine, 38(6): 1291-1301. https://doi.org/10.1016/j.vaccine.2019.12.018 Nomhwange T.I., Jean Baptiste A.E., Ezebilo O., Oteri J., Olajide L., Emelife K., and Tomori O., 2020, The resurgence of yellow fever outbreaks in Nigeria: a 2-year review 2017-2019, BMC Infectious Diseases, 21: 1-12. https://doi.org/10.1186/s12879-021-06727-y Oreshkova N., Myeni S.K., Mishra N., Albulescu I., and Kikkert M., 2021, A yellow fever 17D virus replicon-based vaccine platform for emerging coronaviruses, Vaccines, 9(12): 1492. https://doi.org/10.3390/vaccines9121492 Pereira R.C., Silva A.M.V., O Souza M.C., and Freire M., 2015, An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures, Vaccine, 33(35): 4261-4268. https://doi.org/10.1016/j.vaccine.2015.03.077

RkJQdWJsaXNoZXIy MjQ4ODYzNA==