JMR_2024v14n5

Journal of Mosquito Research, 2024, Vol.14, No.5, 247-255 http://emtoscipublisher.com/index.php/jmr 254 Diallo A., Chevalier V., Cappelle J., Duboz R., Didier F., and Benoît D., 2018, Modelling and assessment of combining gilt vaccination, vector control and pig herd management to control Japanese Encephalitis virus transmission in Southeast Asia, bioRxiv, 2018: 430231. https://doi.org/10.1101/430231 Eynde C., Sohier C., Matthijs S., and Regge N., 2022, Japanese encephalitis virus interaction with mosquitoes: a review of vector competence, Vector Capacity and Mosquito Immunity, Pathogens, 11(3): 317. https://doi.org/10.3390/pathogens11030317 Faizah A., Kobayashi D., Isawa H., Amoa-Bosompem M., Murota K., Higa Y., Futami K., Shimada S., Kim K., Itokawa K., Watanabe M., Tsuda Y., Minakawa N., Miura K., Hirayama K., and Sawabe K., 2020, Deciphering the virome of Culex vishnui subgroup mosquitoes, the major vectors of Japanese Encephalitis, in Japan, Viruses, 12(3): 264. https://doi.org/10.3390/v12030264 Furlong M., Adamu A., Hickson R., Horwood P., Golchin M., Hoskins A., and Russell T., 2022, Estimating the distribution of japanese encephalitis vectors in australia using ecological niche modelling, Tropical Medicine and Infectious Disease, 7(12): 393. https://doi.org/10.3390/tropicalmed7120393 Furlong M., Adamu A., Hoskins A., Russell T., Gummow B., Golchin M., Hickson R., and Horwood P., 2023, Japanese Encephalitis enzootic and epidemic risks across Australia, Viruses, 15(2): 450. https://doi.org/10.3390/v15020450 Hameed M., Wahaab A., Nawaz M., Khan S., Nazir J., Liu K., Wei J., and Ma Z., 2021, Potential role of birds in japanese encephalitis virus zoonotic transmission and genotype shift, Viruses, 13(3): 357. https://doi.org/10.3390/v13030357 Huang X., Yan L., Gao X., Ren Y., Fu S., Cao Y., He Y., Lei W., Liang G., Wang S., and Wang H., 2018, The relationship between japanese encephalitis and environmental factors in china explored using national surveillance data, Biomedical and Environmental Sciences, 31(3): 227-232. https://doi.org/10.3967/bes2018.028 Hurk A., Skinner E., Ritchie S., and Mackenzie J., 2022, The emergence of japanese encephalitis virus in Australia in 2022: existing knowledge of mosquito vectors, Viruses, 14(6): 1208. https://doi.org/10.3390/v14061208. Kling K., Harder T., Younger Z., Burchard G., Schmidt-Chanasit J., and Wichmann O., 2020, Vaccination against Japanese Encephalitis with IC51: systematic review on immunogenicity, duration of protection, and safety, Journal of Travel Medicine, 27(2): taaa016. https://doi.org/10.1093/jtm/taaa016 Kwa F., Kendal E., and Xiao J., 2023, An overview of japanese encephalitis in australia: trends, impact and interventions, Applied Sciences, 13(16): 9184. https://doi.org/10.3390/app13169184 Ladreyt H., Chevalier V., and Durand B., 2022, Modelling Japanese encephalitis virus transmission dynamics and human exposure in a Cambodian rural multi-host system, PLoS Neglected Tropical Diseases, 16(7): e0010572. https://doi.org/10.1371/journal.pntd.0010572 Ladreyt H., Durand B., Dussart P., and Chevalier V., 2019, How central is the domestic pig in the epidemiological cycle of japanese encephalitis virus? a review of scientific evidence and implications for disease control, Viruses, 11(10): 949. https://doi.org/10.3390/v11100949 Liu B., Gao X., Ma J., Jiao Z., Xiao J., and Wang H., 2018, Influence of host and environmental factors on the distribution of the japanese encephalitis vector Culex tritaeniorhynchus in China, International Journal of Environmental Research and Public Health, 15(9): 1848. https://doi.org/10.3390/ijerph15091848 Liu Z., Zhang Y., Tong M., Zhang Y., Xiang J., Gao Q., Wang S., Sun S., Jiang B., and Bi P., 2020, Nonlinear and threshold effect of meteorological factors on japanese encephalitis transmission in southwestern China, The American Journal of Tropical Medicine and Hygiene, 103(6): 2442. https://doi.org/10.4269/ajtmh.20-0040 Mackenzie J., Williams D., Hurk A., Smith D., and Currie B., 2022, Japanese Encephalitis virus: the emergence of genotype IV in Australia and its potential endemicity, Viruses, 14(11): 2480. https://doi.org/10.3390/v14112480 Moore S., 2021, The current burden of Japanese encephalitis and the estimated impacts of vaccination: combining estimates of the spatial distribution and transmission intensity of a zoonotic pathogen, PLoS Neglected Tropical Diseases, 15(10): e0009385. https://doi.org/10.1371/journal.pntd.0009385 Mulvey P., Duong V., Boyer S., Burgess G., Williams D., Dussart P., and Horwood P., 2021, The ecology and evolution of japanese encephalitis virus, Pathogens, 10(12): 1534. https://doi.org/10.3390/pathogens10121534 Oliveira A., Cohnstaedt L., Strathe E., Etcheverry L., McVey D., Piaggio J., and Cernicchiaro N., 2018, Meta-analyses of japanese encephalitis virus infection, dissemination, and transmission rates in vectors, The American Journal of Tropical Medicine and Hygiene, 98(3): 883-890. https://doi.org/10.4269/ajtmh.17-0622 Oliveira A., Cohnstaedt L., Noronha L., Mitzel D., McVey D., and Cernicchiaro N., 2020, Perspectives regarding the risk of introduction of the Japanese Encephalitis Virus (JEV) in the United States, Frontiers in Veterinary Science, 7: 48. https://doi.org/10.3389/fvets.2020.00048

RkJQdWJsaXNoZXIy MjQ4ODYzNA==