Journal of Mosquito Research, 2024, Vol.14, No.5, 237-246 http://emtoscipublisher.com/index.php/jmr 245 Cuthbert R., Ortiz-Perea N., Dick J., and Callaghan A., 2019, Elusive enemies: consumptive and ovipositional effects on mosquitoes by predatory midge larvae are enhanced in dyed environments, Biological Control, 132: 116-121. https://doi.org/10.1016/J.BIOCONTROL.2019.02.008 Dahmana H., and Mediannikov O., 2020, Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically, Pathogens, 9(4): 310. https://doi.org/10.3390/pathogens9040310 Dambach P., 2020, The use of aquatic predators for larval control of mosquito disease vectors: opportunities and limitations. Biological Control, 150: 104357. https://doi.org/10.1016/j.biocontrol.2020.104357 Derua Y., Kahindi S., Mosha F., Kweka E., Atieli H., Wang X., Zhou G., Lee M., Githeko A., and Yan G., 2018, Microbial larvicides for mosquito control: Impact of long lasting formulations of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on non‐target organisms in western Kenya highlands, Ecology and Evolution, 8: 7563-7573. https://doi.org/10.1002/ece3.4250 Eba K., Duchateau L., Olkeba B., Boets P., Bedada D., Goethals P., Mereta S., and Yewhalaw D., 2021, Bio-control of anopheles mosquito larvae using invertebrate predators to support human health programs in Ethiopia, International Journal of Environmental Research and Public Health, 18(4): 1810. https://doi.org/10.3390/ijerph18041810 Guarner J., and Hale G., 2019, Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever.. Seminars in diagnostic pathology, 36(3): 170-176. https://doi.org/10.1053/j.semdp.2019.04.009 Johnson B., Manby R., and Devine G., 2020, Performance of an aerially applied liquid Bacillus thuringiensis var. israelensis formulation (strain AM65-52) against mosquitoes in mixed saltmarsh-mangrove systems and fine-scale mapping of mangrove canopy cover using affordable drone-based imagery, Pest Management Science, 76(11): 3822-3831. https://doi.org/10.1002/ps.5933 Jones R., Ant T., Cameron M., and Logan J., 2020, Novel control strategies for mosquito-borne diseases, Philosophical Transactions of the Royal Society B, 376(1818): 20190802. https://doi.org/10.1098/rstb.2019.0802 Kang J., Lim C., Park S., Kim W., Sareein N., and Bae Y., 2020, Genetic and morphologic variation in a potential mosquito biocontrol agent, hydrochara affinis (Coleoptera: Hydrophilidae), Sustainability, 12: 5481. https://doi.org/10.3390/su12135481 Koller J., Sutter L., Gonthier J., Collatz J., and Norgrove L., 2023, Entomopathogens and parasitoids allied in biocontrol: a systematic review, Pathogens, 12(7): 957. https://doi.org/10.3390/pathogens12070957 Lanzaro G., Campos M., Crepeau M., Cornel A., Estrada A., Gripkey H., Haddad Z., Kormos A., Palomares S., and Sharpee W., 2021, Selection of sites for field trials of genetically engineered mosquitoes with gene drive, Evolutionary Applications, 14: 2147-2161. https://doi.org/10.1111/eva.13283 Minwuyelet A., Petronio G., Yewhalaw D., Sciarretta A., Magnifico I., Nicolosi D., Marco R., and Atenafu G., 2023, Symbiotic Wolbachia in mosquitoes and its role in reducing the transmission of mosquito-borne diseases: updates and prospects, Frontiers in Microbiology, 14: 1267832. https://doi.org/10.3389/fmicb.2023.1267832 Ogunlade S., Meehan M., Adekunle A., and McBryde E., 2023, A systematic review of mathematical models of dengue transmission and vector control: 2010-2020, Viruses, 15(1): 254. https://doi.org/10.3390/v15010254 Onen H., Luzala M., Kigozi S., Sikumbili R., Muanga C., Zola E., Wendji S., Buya A., Balčiūnaitienė A., Viškelis J., Kaddumukasa M., and Memvanga P., 2023, Mosquito-borne diseases and their control strategies: an overview focused on green synthesized plant-based metallic nanoparticles, Insects, 14(3): 221. https://doi.org/10.3390/insects14030221 Parihar K., Telang M., and Ovhal A., 2020, A patent review on strategies for biological control of mosquito vector, World Journal of Microbiology and Biotechnology, 36: 1-23. https://doi.org/10.1007/s11274-020-02960-w Priyadarshana T., and Slade E., 2023, A meta-analysis reveals that dragonflies and damselflies can provide effective biological control of mosquitoes, The Journal of Animal Ecology, 92(8): 1589-1600. https://doi.org/10.1111/1365-2656.13965 Sajjad H., and Arif N., 2019, Biological control of mosquito vectors, Scientific Inquiry and Review, 3(1): 25-32. https://doi.org/10.32350/sir.31.03 Salazar F., Angeles J., Sy A., Inobaya M., Aguila A., Toner T., Bangs M., Thomsen E., and Paul R., 2019, Efficacy of the In2Care® auto-dissemination device for reducing dengue transmission: study protocol for a parallel, two-armed cluster randomised trial in the Philippines, Trials, 20: 1-12. https://doi.org/10.1186/s13063-019-3376-6 Schiller A., Allen M., Coffey J., Fike A., and Carballo F., 2019, Updated methods for the production of toxorhynchites rutilus septentrionalis (diptera, culicidae) for use as biocontrol agent against container breeding pest mosquitoes in Harris county, Texas, Journal of Insect Science, 19(2): 8. https://doi.org/10.1093/jisesa/iez011
RkJQdWJsaXNoZXIy MjQ4ODYzNA==