JMR_2024v14n5

Journal of Mosquito Research, 2024, Vol.14, No.5, 226-236 http://emtoscipublisher.com/index.php/jmr 235 Li Y., Zhou G., Zhong S., Wang X., Zhong D., Hemming-Schroeder E., Yi G., Fu F., Fu F., Cui L., Cui G., and Yan G., 2020, Spatial heterogeneity and temporal dynamics of mosquito population density and community structure in Hainan Island, China. Parasites and Vectors, 13: 1-11. https://doi.org/10.1186/s13071-020-04326-5 Liu B., Gao X., Zheng K., Ma J., Jiao Z., Xiao J., and Wang H., 2020, The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: an ecological niche modelling approach, Pest Management Science, 76(9): 3096-3107. https://doi.org/10.1002/ps.5861 Masimalai P., 2021, The environmental risk factors significant to anopheles species vector mosquito profusion, P.falciparum, P.vivax parasite development, and malaria transmission, using remote sensing and gis: review article, Indian Journal of Public Health Research and Development, 12(4): 162-171. https://doi.org/10.37506/ijphrd.v12i4.16539 Mukabana W., Welter G., Ohr P., Tingitana L., Makame M., Ali A., and Knols B., 2022, Drones for area-wide larval source management of malaria mosquitoes, Drones, 6(7): 180. https://doi.org/10.3390/drones6070180 Nipa K., Jang S., and Allen L., 2020, The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population, Mathematical Biosciences, 331: 108516. https://doi.org/10.1016/j.mbs.2020.108516 Nosrat C., Altamirano J., Anyamba A., Caldwell J., Damoah R., Mutuku F., Ndenga B., and LaBeaud A., 2021, Impact of recent climate extremes on mosquito-borne disease transmission in Kenya, PLoS Neglected Tropical Diseases, 15(3): e0009182. https://doi.org/10.1371/journal.pntd.0009182 Odero J., Gomes B., Fillinger U., and Weetman D., 2018, Detection and quantification of Anopheles gambiae sensu lato mosquito larvae in experimental aquatic habitats using environmental DNA (eDNA), Wellcome Open Research, 3: 26. https://doi.org/10.12688/wellcomeopenres.14193.1 Pedro P., Sá I., Rojas M., Amorim J., Galardo A., Neto N., Furtado N., Carvalho D., Ribeiro K., Paiva M., Razzolini M., and Sallum M., 2020, Efficient monitoring of adult and immature mosquitoes through metabarcoding of bulk samples: a case study for non-model culicids with unique Ecologies, Journal of Medical Entomology, 58: 1210-1218. https://doi.org/10.1093/jme/tjaa267 Schwab S., Stone C., Fonseca D., and Fefferman N., 2019, (Meta) population dynamics determine effective spatial distributions of mosquito-borne disease control, Ecological Applications, 29(3): e01856. https://doi.org/10.1002/eap.1856 Silva-Inácio C., and Ximenes M., 2023, Mosquitoes (Diptera: Culicidae) of the Brazilian semiarid: dynamic interactions with biotic and abiotic factors, Austral Entomology, 62: 106-117. https://doi.org/10.1111/aen.12635 Spanoudis C., Pappas C., Savopoulou-soultani M., and Andreadis S., 2021, Composition, seasonal abundance, and public health importance of mosquito species in the regional unit of Thessaloniki, Northern Greece, Parasitology Research, 120: 3083-3090. https://doi.org/10.1007/s00436-021-07264-y Stanton M., Kalonde P., Zembere K., Spaans R., and Jones C., 2020, The application of drones for mosquito larval habitat identification in rural environments: a practical approach for malaria control ? Malaria Journal, 20(1): 244. https://doi.org/10.1186/s12936-021-03759-2 Stephenson E., Murphy A., Jansen C., Peel A., and McCallum H., 2018, Interpreting mosquito feeding patterns in Australia through an ecological lens: an analysis of blood meal studies, Parasites and Vectors, 12: 1-11. https://doi.org/10.1186/s13071-019-3405-z Tran A., Mangeas M., Demarchi M., Roux E., Degenne P., Haramboure M., Goff G., Damiens D., Gouagna L., Herbreteau V., and Dehecq J., 2020, Complementarity of empirical and process-based approaches to modelling mosquito population dynamics with Aedes albopictus as an example-application to the development of an operational mapping tool of vector populations, PLoS One, 15(1): e0227407. https://doi.org/10.1371/journal.pone.0227407 Traoré B., Koutou O., and Sangaré B., 2020, A global mathematical model of malaria transmission dynamics with structured mosquito population and temperature variations, Nonlinear Analysis: Real World Applications, 53: 103081. https://doi.org/10.1016/j.nonrwa.2019.103081 Valentine M., Ciraola B., Jacobs G., Arnot C., Kelly P., and Murdock C., 2020, Effects of seasonality and land use on the diversity, relative abundance, and distribution of mosquitoes on St. Kitts, West Indies, Parasites and Vectors, 13: 1-14. https://doi.org/10.1186/s13071-020-04421-7 Wagner S., Guidi V., Torgerson P., Mathis A., and Schaffner F., 2018, Diversity and seasonal abundances of mosquitoes at potential arboviral transmission sites in two different climate zones in Switzerland, Medical and Veterinary Entomology, 32(2): 175-185. https://doi.org/10.1111/mve.12292 Whittaker C., Winskill P., Sinka M., Pironon S., Massey C., Weiss D., Nguyen M., Gething P., Kumar A., Ghani A., and Bhatt S., 2021, The ecological structure of mosquito population seasonal dynamics, Biological Sciences, 2021: 1-16. https://doi.org/10.1101/2021.01.09.21249456

RkJQdWJsaXNoZXIy MjQ4ODYzNA==