JMR_2024v14n5

Journal of Mosquito Research, 2024, Vol.14, No.5, 226-236 http://emtoscipublisher.com/index.php/jmr 234 Asigau S., and Parker P., 2018, The influence of ecological factors on mosquito abundance and occurrence in Galápagos, Journal of Vector Ecology, 43: 125-137. https://doi.org/10.1111/jvec.12292 Boerlijst S., Trimbos K., Beek J., Dijkstra K., Hoorn B., and Schrama M., 2019, Field evaluation of DNA based biodiversity monitoring of caribbean mosquitoes, Frontiers in Ecology and Evolution, 7: 240. https://doi.org/10.3389/fevo.2019.00240 Brown J., Pascual M., Wimberly M., Johnson L., and Murdock C., 2023, Humidity-The overlooked variable in the thermal biology of mosquito-borne disease, Ecology letters, 26: 1029-1049. https://doi.org/10.1111/ele.14228 Brugueras S., Martínez B., Puente J., Figuerola J., Porro T., Rius C., Larrauri A., and Gómez-Barroso D., 2020, Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: a systematic review, Environmental Research, 191: 110038. https://doi.org/10.1016/j.envres.2020.110038 Caputo B., Langella G., Petrella V., Virgillito C., Manica M., Filipponi F., Varone M., Primo P., Puggioli A., Bellini R., D'Antonio C., Iesu L., Tullo L., Rizzo C., Longobardi A., Sollazzo G., Perrotta M., Fabozzi M., Palmieri F., Saccone G., Rosà R., Torre A., and Salvemini M., 2021, Aedes albopictus bionomics data collection by citizen participation on Procida Island, a promising Mediterranean site for the assessment of innovative and community-based integrated pest management methods, PLoS Neglected Tropical Diseases, 15(9): e0009698. https://doi.org/10.1371/journal.pntd.0009698 Cazelles B., Cazelles K., Tian H., Chavez M., and Pascual M., 2023, Disentangling local and global climate drivers in the population dynamics of mosquito-borne infections, Science Advances, 9(39): eadf7202. https://doi.org/10.1126/sciadv.adf7202 Colón-González F., Sewe M., Tompkins A., Sjödin H., Casallas A., Rocklöv J., Caminade C., and Lowe R., 2021, Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study, The Lancet, Planetary Health, 5: e404-e414. https://doi.org/10.1016/S2542-5196(21)00132-7 Couper L., Farner J., Caldwell J., Childs M., Harris M., Kirk D., Nova N., Shocket M., Skinner E., Uricchio L., Expósito-Alonso M., and Mordecai E., 2021, How will mosquitoes adapt to climate warming? eLife, 10: e69630. https://doi.org/10.7554/eLife.69630 DeSiervo M., Finger-Higgens R., Ayres M., Virginia R., and Culler L., 2022, Spatial and temporal patterns in Arctic mosquito abundance, Ecological Entomology, 48: 19-30. https://doi.org/10.1111/een.13198 Epopa P., Collins C., North A., Millogo A., Benedict M., Tripet F., and Diabaté A., 2019, Seasonal malaria vector and transmission dynamics in western Burkina Faso, Malaria Journal, 18: 1-13. https://doi.org/10.1186/s12936-019-2747-5 Epopa P., Millogo A., Collins C., North A., Benedict M., Tripet F., OʼLoughlin S., Dabiré R., Ouédraogo G., and Diabaté A., 2020, Anopheles gambiae (s.l.) is found where few are looking: assessing mosquito diversity and density outside inhabited areas using diverse sampling methods, Parasites and Vectors, 13: 1-11. https://doi.org/10.1186/s13071-020-04403-9 Ewing D., Purse B., Cobbold C., Schäfer S., and White S., 2019, Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK, Parasites and Vectors, 12: 1-19. https://doi.org/10.1186/s13071-019-3321-2 Fornasiero D., Mazzucato M., Barbujani M., Montarsi F., Capelli G., and Mulatti P., 2020, Inter-annual variability of the effects of intrinsic and extrinsic drivers affecting West Nile virus vector Culex pipiens population dynamics in northeastern Italy, Parasites and Vectors, 13: 1-12. https://doi.org/10.1186/s13071-020-04143-w Heinisch M., Diaz-Quijano F., Chiaravalloti-Neto F., Pancetti F., Coelho R., Andrade P., Urbinatti P., Almeida R., and Lima-Camara T., 2019. Seasonal and spatial distribution of Aedes aegypti and Aedes albopictus in a municipal urban park in São Paulo, SP, Brazil, Acta Tropica, 189: 104-113. https://doi.org/10.1016/j.actatropica.2018.09.011 Hollingsworth B., Grubaugh N., Lazzaro B., and Murdock C., 2023, Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics, PLOS Pathogens, 19(8): e1011588. https://doi.org/10.1371/journal.ppat.1011588 Hwang M., Kim H., Klein T., Chong S., Sim K., Chung Y., and Cheong H., 2020, Comparison of climatic factors on mosquito abundance at US Army Garrison Humphreys, Republic of Korea, PLoS One, 15(10): e0240363. https://doi.org/10.1371/journal.pone.0240363 Kirik H., Burtin V., Tummeleht L., and Kurina O., 2021, Friends in all the green spaces: weather dependent changes in urban mosquito (diptera: culicidae) abundance and diversity, Insects, 12(4): 352. https://doi.org/10.3390/insects12040352 Kofidou M., Williams M., Nearchou A., Veletza S., Gemitzi A., and Karakasiliotis I., 2021, Applying remotely sensed environmental information to model mosquito populations, Sustainability, 13(14): 7655. https://doi.org/10.3390/SU13147655

RkJQdWJsaXNoZXIy MjQ4ODYzNA==