JMR2024v14n4

Journal of Mosquito Research 2024, Vol.14, No.4, 215-225 http://emtoscipublisher.com/index.php/jmr 224 Bettis A., Jackson M., Yoon I., Breugelmans J., Goios A., Gubler D., and Powers A., 2022, The global epidemiology of chikungunya from 1999 to 2020: a systematic literature review to inform the development and introduction of vaccines, PLoS Neglected Tropical Diseases, 16: 78-80. Biswal S., Reynales H., Sáez-Llorens X., López P., Borja-Tabora C., Kosalaraksa P., Sirivichayakul C., Watanaveeradej V., Rivera L., Espinoza F., Fernando L., Dietze R., Luz K., Cunha R., Jimeno J., López-Medina E., Borkowski A., Brose M., Rauscher M., Lefevre I., Bizjajeva S., Bravo L., and Wallace D., 2019, Efficacy of a tetravalent dengue vaccine in healthy children and adolescents, The New England Journal of Medicine, 56: 79-90. https://doi.org/10.1056/NEJMoa1903869 Brugueras S., Martínez B., Puente J., Figuerola J., Porro T., Rius C., Larrauri A., and Gómez-Barroso D., 2020, Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern europe: a systematic review, Environmental Research, 11: 38. https://doi.org/10.1016/j.envres.2020.110038 Cunha M., Costa P., Corrêa I., Souza M., Calil P., Silva G., Costa S., Fonseca V., and Costa L., 2020, Chikungunya virus: an emergent arbovirus to the south american continent and a continuous threat to the world, Frontiers in Microbiology, 11: 89-90. https://doi.org/10.3389/fmicb.2020.01297 Erasmus J., Seymour R., Kaelber J., Kim D., Leal G., Sherman M., Frolov I., Chiu W., Weaver S., and Nasar F., 2017, Novel insect-specific eilat virus-based chimeric vaccine candidates provide durable, mono and multivalent, single-dose protection against lethal alphavirus challenge, Journal of Virology, 92: 11. https://doi.org/10.1128/JVI.01274-17 Franklinos L., Jones K., Redding D., and Abubakar I., 2019, The effect of global change on mosquito-borne disease, The Lancet Infectious Diseases, 6: 17-23. https://doi.org/10.1016/S1473-3099(19)30161-6 Gebre M., Brito L., Tostanoski L., Edwards D., Carfi A., and Barouch D., 2021, Novel approaches for vaccine development, Cell, 184: 1589-1603. https://doi.org/10.1016/j.cell.2021.02.030 Huang Y., Higgs S., and Vanlandingham D., 2019, Emergence and re-emergence of mosquito-borne arboviruses, Current Opinion in Virology, 34: 104-109. https://doi.org/10.1016/j.coviro.2019.01.001 Huang Z., Zhang Y., Li H., Zhu J., Song W., Chen K., Zhang Y., and Lou Y., 2023, Vaccine development for mosquito-borne viral diseases, Frontiers in Immunology, 14: 493-497. https://doi.org/10.3389/fimmu.2023.1161149 Jiang J., Ramos S., Bangalore P., Elwood D., Cashman K., Kudchodkar S., Schultheis K., Pugh H., Walters J., Tur J., Yan J., Patel A., Muthumani K., Schmaljohn C., Weiner D., Humeau L., and Broderick K., 2021, Multivalent DNA vaccines as a strategy to combat multiple concurrent epidemics: mosquito-borne and hemorrhagic fever viruses, Viruses, 13: 67-82. https://doi.org/10.3390/v13030382 Kantor I., 2018, Dengue, zika, chikungunya and the development of vaccines, Medicina, 78(1): 23-28. Kim K., 2018, Current challenges in the development of vaccines and drugs against emerging vector-borne diseases, Current Medicinal Chemistry, 11: 46-60. https://doi.org/10.2174/0929867325666181105121146 Manning J., Oliveira F., Coutinho-Abreu I., Herbert S., Meneses C., Kamhawi S., Baus H., Han A., Czajkowski L., Rosas L., Cervantes-Medina A., Athota R., Reed S., Mateja A., Hunsberger S., James E., Pleguezuelos O., Stoloff G., Valenzuela J., and Memoli M., 2020, Safety and immunogenicity of a mosquito saliva peptide-based vaccine: a randomised, placebo-controlled, double-blind, phase 1 trial, The Lancet, 395: 1998-2007. https://doi.org/10.1016/S0140-6736(20)31048-5 Marchi S., Trombetta C., and Montomoli E., 2018, Emerging and re-emerging arboviral diseases as a global health problem, Public Health-Emerging and Re-emerging Issues, 2: 1908. https://doi.org/10.5772/INTECHOPEN.77382 Mordecai E., Caldwell J., Grossman M., Lippi C., Johnson L., Neira M., Rohr J., Ryan S., Savage V., Shocket M., Sippy R., Ibarra A., Thomas M., and Villena O., 2019, Thermal biology of mosquito-borne disease, Ecology Letters, 22: 1690-1708. https://doi.org/10.1111/ele.13335 Näslund J., Ahlm C., Islam K., Evander M., Bucht G., and Lwande O., 2021, Emerging mosquito-borne viruses linked to Aedes aegypti and Aedes albopictus: global status and preventive strategies, Vector Borne and Zoonotic Diseases, 6: 23-45. https://doi.org/10.1089/vbz.2020.2762 Pardi N., Hogan M., and Weissman D., 2020, Recent advances in mRNA vaccine technology, Current Opinion in Immunology, 65: 14-20. https://doi.org/10.1016/j.coi.2020.01.008 Parselia E., Kontoes C., Tsouni A., Hadjichristodoulou C., Kioutsioukis I., Magiorkinis G., and Stilianakis N., 2019, Satellite earth observation data in epidemiological modeling of malaria, dengue and west nile virus: a scoping review, Remote. Sens., 11: 1862. https://doi.org/10.3390/rs11161862 Roth A., Mercier A., Lepers C., Hoy D., Duituturaga S., Benyon E., Guillaumot L., and Souarés Y., 2014, Concurrent outbreaks of dengue, chikungunya and Zika virus infections-an unprecedented epidemic wave of mosquito-borne viruses in the pacific 2012-2014, Euro surveillance : bulletin europeen sur les maladies transmissibles, European Communicable Disease Bulletin, 19: 41. https://doi.org/10.2807/1560-7917.ES2014.19.41.20929 Shragai T., Tesla B., Murdock C., and Harrington L., 2017, Zika and chikungunya: mosquito-borne viruses in a changing world, Annals of the New York Academy of Sciences, 13: 99. https://doi.org/10.1111/nyas.13306

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==