JMR2024v14n4

Journal of Mosquito Research 2024, Vol.14, No.4, 195-203 http://emtoscipublisher.com/index.php/jmr 202 Cailly P., Tran A., Balenghien T., L’Ambert G., Toty C., and Ezanno P., 2012, A climate-driven abundance model to assess mosquito control strategies, Ecological Modelling, 227: 7-17. Caldwell J., LaBeaud A., Lambin E., Stewart-Ibarra A., Ndenga B., Mutuku F., Krystosik A., Ayala E., Anyamba A., Borbor-Cordova, M., Damoah R., Grossi-Soyster E., Heras F., Ngugi H., Ryan S., Shah M., Sippy R., and Mordecai E., 2021, Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents, Nature Communications, 12: 23. https://doi.org/10.1038/s41467-021-21496-7 Chuang T., Henebry G., Kimball J., Vanroekel-Patton D., Hildreth M., and Wimberly M., 2012, Satellite microwave remote sensing for environmental modeling of mosquito population dynamics, Remote Sensing of Environment, 125: 147-156. https://doi.org/10.1016/J.RSE.2012.07.018 Díaz-Marín H., Osuna O., and Villavicencio-Pulido G., 2023, Modeling the effects of climate change on the population dynamics of mosquitoes that are vectors of infectious diseases, Proyecciones (Antofagasta), 17: 89. https://doi.org/10.22199/issn.0717-6279-5844 Djerdj T., Hackenberger D., Klanjšček T., and Hackenberger B., 2022, Modelling can reduce contamination from mosquito population control, Stochastic Environmental Research and Risk Assessment, 37: 1007-1019. https://doi.org/10.1007/s00477-022-02326-8 Eisen L., Monaghan A., Lozano-Fuentes S., Steinhoff D., Hayden M., and Bieringer P., 2014, The Impact of temperature on the bionomics of Aedes (stegomyia) Aegypti, Special Reference to the Cool Geographic Range Margins, 51: 496-516. https://doi.org/10.1603/ME13214 Fletcher I., Gibb R., Lowe R., and Jones K., 2023, Differing taxonomic responses of mosquito vectors to anthropogenic land-use change in latin america and the caribbean, PLOS Neglected Tropical Diseases, 17: 45-50. https://doi.org/10.1371/journal.pntd.0011450 Franklinos L., Jones K., Redding D., and Abubakar I., 2019, The effect of global change on mosquito-borne disease, The Lancet Infectious Diseases, 34: 61-65. https://doi.org/10.1016/S1473-3099(19)30161-6 Hunt S., Galatowitsch M., and McIntosh A., 2017, Interactive effects of land use, temperature, and predators determine native and invasive mosquito distributions, Freshwater Biology, 62: 1564-1577. https://doi.org/10.1111/FWB.12967 Jones R., Kulkarni M., Davidson T., and Talbot B., 2019, Arbovirus vectors of epidemiological concern in the americas: a scoping review of entomological studies on zika, dengue and chikungunya virus vectors, PLoS ONE, 15: 71-76. https://doi.org/10.1371/journal.pone.0220753 Kofidou M., Williams M., Nearchou A., Veletza S., Gemitzi A., and Karakasiliotis I., 2021, Applying remotely sensed environmental information to model mosquito populations, Sustainability, 3: 8-10. https://doi.org/10.3390/SU13147655 Kolimenakis A., Heinz S., Wilson M., Winkler V., Yakob L., Michaelakis A., Papachristos D., Richardson C., and Horstick O., 2021, The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit-a systematic review, PLoS Neglected Tropical Diseases, 15: 31-35. https://doi.org/10.1371/journal.pntd.0009631 Leisnham P., Slaney D., Lester P., and Weinstein P., 2005, Increased larval mosquito densities from modified landuses in the kapiti region, new zealand: vegetation, water quality, and predators as associated environmental factors, EcoHealth, 2: 313-322. https://doi.org/10.1007/s10393-005-8281-7 Li R., Xu L., Bjørnstad O., Liu K., Song T., Chen A., Xu B., Liu Q., and Stenseth N., 2019, Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue, Proceedings of the National Academy of Sciences of the United States of America, 116: 3624-3629. https://doi.org/10.1073/pnas.1806094116 Liu Y., Lillepold K., Semenza J., Tozan Y., Quam M., and Rocklöv J., 2020, Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones, Environmental research, 182: 109114. https://doi.org/10.1016/j.envres.2020.109114 Madzokere E., Hallgren W., Sahin O., Webster J., Webb C., Mackey B., and Herrero L., 2020, Integrating statistical and mechanistic approaches with biotic and environmental variables improves model predictions of the impact of climate and land-use changes on future mosquito-vector abundance, diversity and distributions in australia, Parasites & Vectors, 13: 43-50. https://doi.org/10.1186/s13071-020-04360-3 Nosrat C., Altamirano J., Anyamba A., Caldwell J., Damoah R., Mutuku F., Ndenga B., and LaBeaud A., 2021, Impact of recent climate extremes on mosquito-borne disease transmission in Kenya, PLoS Neglected Tropical Diseases, 15: 78-89. https://doi.org/10.1371/journal.pntd.0009182 Ramasamy R., and Surendran S., 2012, Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones, Frontiers in Physiology, 3: 98-102. https://doi.org/10.3389/fphys.2012.00198 Reinhold J., Lazzari C., and Lahondère C., 2018, Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review, Insects, 9: 58-61. https://doi.org/10.3390/insects9040158

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==