JMR2024v14n4

Journal of Mosquito Research 2024, Vol.14, No.4, 172-183 http://emtoscipublisher.com/index.php/jmr 181 Beier J., 1998, Malaria parasite development in mosquitoes, Annual Review of Entomology, 43: 519-543. https://doi.org/10.1146/ANNUREV.ENTO.43.1.519 Belachew E., 2018, Immune response and evasion mechanisms of plasmodium falciparum parasites, Journal of Immunology Research, 10: 55-74. Benelli G., Iacono A., Canale A., and Mehlhorn H., 2016, Mosquito vectors and the spread of cancer: an overlooked connection, Parasitology Research, 115: 2131-2137. https://doi.org/10.1007/s00436-016-5037-y Benelli G., Jeffries C., and Walker T., 2016, Biological control of mosquito vectors: past, present, and future, Insects, 7: 52-59. https://doi.org/10.3390/insects7040052 Bhattacharjee S., Ghosh D., Saha R., Sarkar R., Kumar S., Khokhar M., and Pandey R., 2023, Mechanism of immune evasion in mosquito-borne diseases, Pathogens, 12: 3-18. https://doi.org/10.3390/pathogens12050635 Blair C., Adelman Z., and Olson K., 2000, Molecular strategies for interrupting arthropod-borne virus transmission by mosquitoes, Clinical Microbiology Reviews, 13: 651-661. https://doi.org/10.1128/CMR.13.4.651 Brugueras S., Martínez B., Puente J., Figuerola J., Porro T., Rius C., Larrauri A., and Gómez-Barroso D., 2020, Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern europe: a systematic review, Environmental Research, 1100: 38. https://doi.org/10.1016/j.envres.2020.110038 Carrington L., and Simmons C., 2014, Human to mosquito transmission of dengue viruses, Frontiers in Immunology, 5: 90-98. https://doi.org/10.3389/fimmu.2014.00290 Cui Y., Grant D., Lin J., Yu X., and Franz A., 2019, Zika virus dissemination from the midgut of Aedes aegypti is facilitated by bloodmeal-mediated structural modification of the midgut basal lamina, Viruses, 11: 58. https://doi.org/10.3390/v11111056 Dahmana H., and Mediannikov O., 2020, Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically, Pathogens, 9: 31-38. https://doi.org/10.3390/pathogens9040310 Dong Y., Manfredini F., and Dimopoulos G., 2009, Implication of the mosquito midgut microbiota in the defense against malaria parasites, PLoS Pathogens, 5: 425. https://doi.org/10.1371/journal.ppat.1000423 Emami S., Ranford-Cartwright L., and Ferguson H., 2017, The transmission potential of malaria-infected mosquitoes (An.gambiae-Keele, An.arabiensis-Ifakara) is altered by the vertebrate blood type they consume during parasite development, Scientific Reports, 7: 52-57. https://doi.org/10.1038/srep40520 Estrada-Franco J., Fernández-Santos N., Adebiyi A., López-López M., Aguilar-Durán J., Hernández-Triana L., Prosser S., Hebert P., Fooks A., Hamer G., Xue L., and Rodríguez-Pérez M., 2020, Vertebrate-Aedes aegypti and Culex quinquefasciatus (Diptera)-arbovirus transmission networks: non-human feeding revealed by meta-barcoding and next-generation sequencing, PLoS Neglected Tropical Diseases, 14: e0008867. https://doi.org/10.1371/journal.pntd.0008867 Farajollahi A., Fonseca D., Kramer L., Kramer L., and Kilpatrick A., 2011, "Bird biting" mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology, Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 11: 1577-1585. https://doi.org/10.1016/j.meegid.2011.08.013 Ferraguti M., Heesterbeek H., Puente J., Jiménez-Clavero M., Vázquez A., Ruíz S., Llorente F., Roiz D., Vernooij H., Soriguer R., and Figuerola J., 2020, The role of different Culex mosquito species in the transmission of west nile virus and avian malaria parasites in mediterranean areas, Transboundary and Emerging Diseases, 11: 76-79. https://doi.org/10.1111/tbed.13760 Franz A., Kantor A., Passarelli A., and Clem R., 2015, Tissue barriers to arbovirus infection in mosquitoes, Viruses, 7: 3741-3767. https://doi.org/10.3390/v7072795 Gabrieli P., Caccia S., Varotto-Boccazzi I., Arnoldi I., Barbieri G., Comandatore F., and Epis S., 2021, Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission, Frontiers in Microbiology, 12: 36-39. https://doi.org/10.3389/fmicb.2021.630438 Gomard Y., Lebon C., Mavingui P., and Atyame C., 2020, Contrasted transmission efficiency of zika virus strains by mosquito species Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from reunion island, Parasites & Vectors, 13: 67-69. https://doi.org/10.1186/s13071-020-04267-z Guerrero D., Cantaert T., and Missé D., 2020, Aedes mosquito salivary components and their effect on the immune response to arboviruses, Frontiers in Cellular and Infection Microbiology, 10: 40-57. https://doi.org/10.3389/fcimb.2020.00407 Héry L., Boullis A., Delannay C., and Vega-Rúa A., 2019, Transmission potential of african, asian and american zika virus strains by Aedes aegypti and Culex quinquefasciatus from guadeloupe (french west indies), Emerging Microbes & Infections, 8: 699-706. https://doi.org/10.1080/22221751.2019.1615849

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==