JMR_2024v14n3

Journal of Mosquito Research 2024, Vol.14, No.3, 147-160 http://emtoscipublisher.com/index.php/jmr 160 Ryan S., Carlson C., Mordecai E., and Johnson L., 2017, Global expansion and redistribution of Aedes-borne virus transmission risk with climate change, PLoS Neglected Tropical Diseases, 13: 71. https://doi.org/10.1371/journal.pntd.0007213 Schaeffer B., Mondet B., and Touzeau S., 2008, Using a climate-dependent model to predict mosquito abundance: application to Aedes (Stegomyia) africanus and Aedes (Diceromyia) furcifer (Diptera: Culicidae), Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 8(4): 422-432. https://doi.org/10.1016/J.MEEGID.2007.07.002 Tahir F., Bansal D., Rehman A., Ajjur S., Skariah S., Belhaouari S., Al-Romaihi H., Al-Thani M., Farag E., Sultan A., and Al‐Ghamdi S., 2023, Assessing the impact of climate conditions on the distribution of mosquito species in qatar, Frontiers in Public Health, 10: 94. https://doi.org/10.3389/fpubh.2022.970694 Torres P., Baldinotti H., Costa D., Miranda C., and Cardoso A., 2022, Influence of pH, light, food concentration and temperature in Aedes aegypti linnaeus (Diptera: Culicidae) larval development, EntomoBrasilis, 15: 17. https://doi.org/10.12741/ebrasilis.v15.e999

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==