JMR_2024v14n3

Journal of Mosquito Research 2024, Vol.14, No.3, 147-160 http://emtoscipublisher.com/index.php/jmr 159 Grech M., Sartor P., Almirón W., and Ludueña-Almeida F., 2015, Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from córdoba city, argentina, Acta Tropica, 146: 1-6. https://doi.org/10.1016/j.actatropica.2015.02.010 Hidalgo K., Siaussat D., Braman V., Dabiré K., Simard F., Mouline K., and Renault D., 2016, Comparative physiological plasticity to desiccation in distinct populations of the malarial mosquito Anopheles coluzzii, Parasites & Vectors, 9: 86. https://doi.org/10.1186/s13071-016-1854-1 Iwamura T., Guzmán-Holst A., and Murray K., 2020, Accelerating invasion potential of disease vector Aedes aegypti under climate change, Nature Communications, 11: 4. https://doi.org/10.1038/s41467-020-16010-4 Kamdem C., Fouet C., Gamez S., and White B., 2016, Pollutants and insecticides drive local adaptation in african malaria mosquitoes, Molecular Biology and Evolution, 34: 1261-1275. https://doi.org/10.1093/molbev/msx087 Kang D., Kim S., Cotten M., and Sim C., 2020, Transcript assembly and quantification by RNA-seq reveals significant differences in gene expression and genetic variants in mosquitoes of the Culex pipiens (Diptera: Culicidae) complex, Journal of Medical Entomology, 58: 139-145. https://doi.org/10.1093/jme/tjaa167 Kreppel K., Kreppel K., Viana M., Main B., Johnson P., Govella N., Lee Y., Maliti D., Meza F., Lanzaro G., and Ferguson H., 2020, Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in tanzania, Scientific Reports, 10: 4. https://doi.org/10.1038/s41598-020-71187-4 Matthews B., Younger M., and Vosshall L., 2018, The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti, ELife, 8: 92. https://doi.org/10.1101/441592 Medeiros-Sousa A., Oliveira-Christe R., Camargo A., Scinachi C., Milani G., Urbinatti P., Natal D., Ceretti-Junior W., and Marrelli M., 2020, Influence of water's physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of são paulo, brazil, Acta Tropica, 16: 105394. https://doi.org/10.1016/j.actatropica.2020.105394 Moller-Jacobs L., Murdock C., and Thomas M., 2014, Capacity of mosquitoes to transmit malaria depends on larval environment, Parasites & Vectors, 7: 4. https://doi.org/10.1186/s13071-014-0593-4 Monteiro L., Souza J., and Albuquerque C., 2007, Eclosion rate, development and survivorship of Aedes albopictus (Skuse) (Diptera: Culicidae) under different water temperatures, Neotropical Entomology, 36(6): 966-971. https://doi.org/10.1590/S1519-566X2007000600021 Nosrat C., Altamirano J., Anyamba A., Caldwell J., Damoah R., Mutuku F., Ndenga B., and LaBeaud A., 2021, Impact of recent climate extremes on mosquito-borne disease transmission in kenya, PLoS Neglected Tropical Diseases, 15: 71. https://doi.org/10.1371/journal.pntd.0009182 Ohta S., and Kaga T., 2012, Effect of climate on malarial vector distribution in monsoon asia: coupled model for ecophysiological and climatological distribution of mosquito generations (ECD-mg), Climate Research, 53: 77-88. https://doi.org/10.3354/CR01087 Okuneye K., Eikenberry S., and Gumel A., 2019, Weather-driven malaria transmission model with gonotrophic and sporogonic cycles, Journal of Biological Dynamics, 13: 288-324. https://doi.org/10.1080/17513758.2019.1570363 Phelan C., and Rotiberg B., 2013, An age-size reaction norm yields insight into environmental interactions affecting life-history traits: a factorial study of larval development in the malaria mosquito Anopheles gambiae sensu stricto, Ecology and Evolution, 3: 1837-1847. https://doi.org/10.1002/ece3.589 Putri M., Prasasty G., Anwar C., Handayani D., and Dalilah D., 2023, Water PH correlates with the number of mosquito larvae in nature tourism park, Journal of Agromedicine and Medical Sciences, 9(1): 36-40. https://doi.org/10.19184/ams.v9i1.37116 Ramasamy R., and Surendran S., 2012, Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones, Frontiers in Physiology, 3: 98. https://doi.org/10.3389/fphys.2012.00198 Reed E., Reiskind M., and Reiskind M., 2022, Life‐history stage and the population genetics of the tiger mosquito Aedes albopictus at a fine spatial scale, Medical and Veterinary Entomology, 37: 132-142. https://doi.org/10.1111/mve.12618 Reinhold J., Lazzari C., and Lahondère C., 2018, Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review, Insects, 9: 58. https://doi.org/10.3390/insects9040158 Riaz M., Riaz A., Ijaz B., Rahat S., and Nisa Z., 2018, Environment friendly management of mosquito: a short review, Bangladesh Journal of Scientific and Industrial Research, 33: 62. https://doi.org/10.3329/BJSIR.V53I3.38262

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==