JMR_2024v14n3

Journal of Mosquito Research 2024, Vol.14, No.3, 135-146 http://emtoscipublisher.com/index.php/jmr 146 Pan X., Pike A., Joshi D., Bian G., McFadden M., Lu P., Liang X., Zhang F., Raikhel A., and Xi Z., 2017, The bacteriumWolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti, The ISME Journal, 12: 277-288. https://doi.org/10.1038/ismej.2017.174 Parres-Mercader M., Pance A., and Gómez-Díaz E., 2023, Novel systems to study vector-pathogen interactions in malaria, Frontiers in Cellular and Infection Microbiology, 13: 30. https://doi.org/10.3389/fcimb.2023.1146030 Parry R., and Asgari S., 2018, Aedes Anphevirus: an insect-specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with wolbachia and dengue virus infection in cells, Journal of Virology, 92: 18. https://doi.org/10.1128/JVI.00224-18 Reis I., Gibson G., Ayllón T., Tavares A., Araújo J., Monteiro E., Aguiar A., Oliveira J., Paiva A., Pereira H., Monteiro J., Carvalho M., Sabroza P., and Honório N., 2019, Entomo-virological surveillance strategy for dengue Zika and chikungunya arboviruses in field-caught Aedes mosquitoes in an endemic urban area of the northeast of brazil, Acta Tropica, 197: 105061. https://doi.org/10.1016/j.actatropica.2019.105061 Romoli O., and Gendrin M., 2018, The tripartite interactions between the mosquito its microbiota and plasmodium, Parasites and Vectors, 11: 75. https://doi.org/10.1186/s13071-018-2784-x Rückert C., and Ebel G., 2018, How do virus-mosquito interactions lead to viral emergence, Trends in Parasitology, 34: 310-321. https://doi.org/10.1016/j.pt.2017.12.004 Simões M., Caragata E., and Dimopoulos G., 2018, Diverse host and restriction factors regulate mosquito-pathogen interactions, Trends in Parasitology, 34(7): 603-616. https://doi.org/10.1016/j.pt.2018.04.011 Thongsripong P., Chandler J., Green A., Kittayapong P., Wilcox B., Kapan D., and Bennett S., 2017, Mosquito vector-associated microbiota: metabarcoding bacteria and eukaryotic symbionts across habitat types in thailand endemic for dengue and other arthropod-borne diseases, Ecology and Evolution, 8: 1352-1368. https://doi.org/10.1002/ece3.3676 Torres T., Prince B., Robison A., and Rückert C., 2022, Optimized in vitro CRISPR/Cas9 gene editing tool in the west nile virus mosquito vector culex quinquefasciatus, Insects, 13: 56. https://doi.org/10.3390/insects13090856 Tripet F., Aboagye-Antwi F., and Hurd H., 2008, Ecological immunology of mosquito-malaria interactions, Trends in Parasitology, 24: 219-227. https://doi.org/10.1016/j.pt.2008.02.008 Wang Y., Chang M., Wang M., Ji Y., Sun X., Raikhel A., and Zou Z., 2022, OTU7B modulates the mosquito immune response to beauveria bassiana infection via deubiquitination of the toll adaptor TRAF4, Microbiology Spectrum, 11(1): 12-22. https://doi.org/10.1128/spectrum.03123-22 Wang Y., He X., Qiao L., Yu Z., Chen B., and He Z., 2022, CRISPR/Cas9 mediates efficient site-specific mutagenesis of the odorant receptor co-receptor (Orco) in the malaria vector Anopheles sinensis, Pest Management Science, 78(8): 3294-3304. https://doi.org/10.1002/ps.6954 Waterhouse R., Kriventseva E., Meister S., Xi Z., Alvarez K., Bartholomay L., Barillas-Mury C., Bian G., Blandin S., Christensen B., Dong Y., Jiang H., Kanost M., Koutsos A., Levashina E., Li J., Ligoxygakis P., MacCallum R., Mayhew G., Mendes A., Michel K., Osta M., Paskewitz S., Shin S., Vlachou D., Wang L., Wei W., Zheng L., Zou Z., Severson D., Raikhel A., Kafatos F., Dimopoulos G., Zdobnov E., and Christophides G., 2007, Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes, Science, 316: 1738-1743. https://doi.org/10.1126/science.1139862 Yordanova I., Zakovic S., Rausch S., Costa G., Levashina E., and Hartmann S., 2018, Micromanaging immunity in the murine host vs. the mosquito vector: microbiota-dependent immune responses to intestinal parasites, Frontiers in Cellular and Infection Microbiology, 8: 3. https://doi.org/10.3389/fcimb.2018.00308 Yu S., Luo F., Xu Y., Zhang Y., and Jin L., 2022, Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues, Frontiers in Immunology, 13: 70. https://doi.org/10.3389/fimmu.2022.905370

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==