JMR_2024v14n3

Journal of Mosquito Research 2024, Vol.14, No.3, 135-146 http://emtoscipublisher.com/index.php/jmr 145 Desjardins C., Sanscrainte N., Goldberg J., Heiman D., Young S., Zeng Q., Madhani H., Becnel J., and Cuomo C., 2015, Contrasting host-pathogen interactions and genome evolution in two generalist and specialist microsporidian pathogens of mosquitoes, Nature Communications, 6(1): 7121. https://doi.org/10.1038/ncomms8121 Djihinto O., Medjigbodo A., Gangbadja A., Saizonou H., Lagnika H., Nanmede D., Djossou L., Bohounton R., Sovegnon P., Fanou M., Agonhossou R., Akoton R., Moussé W., and Djogbénou L., 2022, Malaria-transmitting vectors microbiota: overview and interactions with anopheles mosquito biology, Frontiers in Microbiology, 13: 891573. https://doi.org/10.3389/fmicb.2022.891573 Dong S., Lin J., Held N., Clem R., Passarelli A., and Franz A., 2015, Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito Aedes aegypti, PLoS ONE, 10(3): e0122353. https://doi.org/10.1371/journal.pone.0122353 Feng X., Zhou S., Wang J., and Hu W., 2018, MicroRNA profiles and functions in mosquitoes, PLoS Neglected Tropical Diseases, 12(5): e0006463. https://doi.org/10.1371/journal.pntd.0006463 Fredericks A., Wallace L., Russell T., Davidson A., Fernández-Sesma A., and Maringer K., 2019, Aedes aegypti (Aag2)-derived clonal mosquito cell lines reveal the effects of pre-existing persistent infection with the insect-specific bunyavirus phasi charoen-like virus on arbovirus replication, PLoS Neglected Tropical Diseases, 13(11): e0007346. https://doi.org/10.1371/journal.pntd.0007346 Gabrieli P., Caccia S., Varotto-Boccazzi I., Arnoldi I., Barbieri G., Comandatore F., and Epis S., 2021, Mosquito trilogy: microbiota immunity and pathogens and their implications for the control of disease transmission, Frontiers in Microbiology, 12: 630438. https://doi.org/10.3389/fmicb.2021.630438 Hammond A., Galizi R., Kyrou K., Simoni A., Siniscalchi C., Katsanos D., Gribble M., Baker D., Marois E., Russell S., Burt A., Windbichler N., Crisanti A., and Nolan T., 2015, A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nature Biotechnology, 34: 78-83. https://doi.org/10.1038/nbt.3439 Hegde S., Nilyanimit P., Kozlova E., Anderson E., Narra H., Sahni S., Heinz E., and Hughes G., 2019, CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes, PLoS Neglected Tropical Diseases, 13(12): e0007883. https://doi.org/10.1371/journal.pntd.0007883 Hernández-Triana L., Garza-Hernández J., Morales A., Prosser S., Hebert P., Nikolova N., Barrero E., Luna-Santillana E., González-Álvarez V., Méndez-López R., Chan-Chable R., Fooks A., and Rodríguez‐Pérez M., 2021, An integrated molecular approach to untangling host-vector-pathogen interactions in mosquitoes (diptera: culicidae) from sylvan communities in mexico, Frontiers in Veterinary Science, 7: 564791. https://doi.org/10.3389/fvets.2020.564791 Kramer L., and Ciota A., 2015, Dissecting vectorial capacity for mosquito-borne viruses, Current Opinion in Virology, 15: 112-118. https://doi.org/10.1016/j.coviro.2015.10.003 Kumar A., Srivastava P., Sirisena P., Dubey S., Kumar R., Shrinet J., and Sunil S., 2018, Mosquito innate immunity, Insects, 9(3): 95. https://doi.org/10.3390/insects9030095 Macias V., McKeand S., Chaverra-Rodriguez D., Hughes G., Fazekas A., Pujhari S., Jasinskiene N., James A., and Rasgon J., 2019, Cas9-mediated gene-editing in the malaria mosquito Anopheles stephensi by ReMOT control, G3: Genes Genomes Genetics, 10: 1353-1360. https://doi.org/10.1534/g3.120.401133 Mahanta D., Bhoi T., Komal J., Samal I., Nikhil R., Paschapur A., Singh G., Kumar P., Desai H., Ahmad M., Singh P., Majhi P., Mukherjee U., Singh P., Saini V., S., Srinivasa N., and Yele Y., 2023, Insect-pathogen crosstalk and the cellular-molecular mechanisms of insect immunity: uncovering the underlying signaling pathways and immune regulatory function of non-coding RNAs, Frontiers in Immunology, 14: 1169152. https://doi.org/10.3389/fimmu.2023.1169152 Martinez J., Showering A., Oke C., Jones R., and Logan J., 2020, Differential attraction in mosquito-human interactions and implications for disease control, Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1818): 20190811. https://doi.org/10.1098/rstb.2019.0811 Mitchell S., and Catteruccia F., 2017, Anopheline reproductive biology: impacts on vectorial capacity and potential avenues for malaria control, Cold Spring Harbor Perspectives In Medicine, 7: 12 https://doi.org/10.1101/cshperspect.a025593 Moller-Jacobs L., Murdock C., and Thomas M., 2014, Capacity of mosquitoes to transmit malaria depends on larval environment, Parasites and Vectors, 7: 1-12. https://doi.org/10.1186/s13071-014-0593-4 Neafsey D., Waterhouse R., Abai M., Aganezov S., Alekseyev M., Allen J., Amon J., Arcà B., Arensburger P., Artemov G., Assour L., Zwiebel L., and Besansky N., 2014, Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes, Science, 347(6217): 1258522. https://doi.org/10.1126/science.1258522 Olson K., and Blair C., 2015, Arbovirus-mosquito interactions: RNAi pathway, Current Opinion in Virology, 15: 119-226. https://doi.org/10.1016/j.coviro.2015.10.001

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==