JMR_2024v14n3

Journal of Mosquito Research 2024, Vol.14, No.3, 124-134 http://emtoscipublisher.com/index.php/jmr 134 Wang G., Gamez S., Raban R., Marshall J., Alphey L., Li M., Rasgon J., and Akbari O., 2021, Combating mosquito-borne diseases using genetic control technologies, Nature Communications, 12: 54. https://doi.org/10.1038/s41467-021-24654-z Wilke A., and Marrelli M., 2012, Genetic control of mosquitoes: population suppression strategies, Revista do Instituto de Medicina Tropical de Sao Paulo, 54(5): 287-292. https://doi.org/10.1590/S0036-46652012000500009 Williams A., Franz A., Reid W., and Olson K., 2020, Antiviral effectors and gene drive strategies for mosquito population suppression or replacement to mitigate arbovirus transmission by Aedes aegypti, Insects, 11: 52. https://doi.org/10.3390/insects11010052 Windbichler N., Menichelli M., Papathanos P., Thyme S., Li H., Ulge U., Hovde B., Baker D., Monnat R., Burt A., and Crisanti A., 2011, A synthetic homing endonuclease-based gene drive system in the human malaria mosquito, Nature, 473: 212-215. https://doi.org/10.1038/nature09937 Zhang D., Zheng X., Xi Z., Bourtzis K., and Gilles J., 2015, Combining the sterile insect technique with the incompatible insect technique: impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS ONE, 10: 26. https://doi.org/10.1371/journal.pone.0121126

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==