JMR_2024v14n3

Journal of Mosquito Research 2024, Vol.14, No.3, 124-134 http://emtoscipublisher.com/index.php/jmr 133 Garcia G., Sylvestre G., Aguiar R., Costa G., Martins A., Lima J., Petersen M., Lourenço-de-Oliveira R., Shadbolt M., Rašić G., Hoffmann A., Villela D., Dias F., Dong Y., O'Neill S., Moreira L., and Maciel-de-Freitas R., 2019, Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion, PLoS Neglected Tropical Diseases, 13(1): e0007023. https://doi.org/10.1371/journal.pntd.0007023 Hugo L., Rašić G., Maynard A., Ambrose L., Liddington C., Thomas C., Nath N., Graham M., Winterford C., Wimalasiri-Yapa B., Xi Z., Beebe N., and Devine G., 2022, Wolbachia walbb inhibit dengue and zika infection in the mosquito Aedes aegypti with an australian background, PLoS Neglected Tropical Diseases, 16: 71. https://doi.org/10.1371/journal.pntd.0010786 Jones R., Kulkarni M., Davidson T., and Talbot B., 2019, Arbovirus vectors of epidemiological concern in the americas: a scoping review of entomological studies on zika, dengue and chikungunya virus vectors, PLoS ONE, 15: 53. https://doi.org/10.1371/journal.pone.0220753 Joyce A., Torres M., Torres R., and Moreno M., 2018, Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in el salvador, vector of dengue, yellow fever, chikungunya and zika, Parasites & Vectors, 11: 5. https://doi.org/10.1186/s13071-018-3226-5 Kotsakiozi P., Gloria-Soria A., Caccone A., Evans B., Schama R., Martins A., and Powell J., 2017, Tracking the return of Aedes aegypti to brazil, the major vector of the dengue, chikungunya and zika viruses, PLoS Neglected Tropical Diseases, 11: 53. https://doi.org/10.1371/journal.pntd.0005653 Lees R., Gilles J., Hendrichs J., Vreysen M., and Bourtzis K., 2015, Back to the future: the sterile insect technique against mosquito disease vectors, Current Opinion in Insect Science, 10: 156-162. https://doi.org/10.1016/j.cois.2015.05.011 Liu Y., Lillepold K., Semenza J., Tozan Y., Quam M., and Rocklöv J., 2020, Reviewing estimates of the basic reproduction number for dengue, zika and chikungunya across global climate zones, Environmental Research, 182: 109114. https://doi.org/10.1016/j.envres.2020.109114 Macias V., Ohm J., and Rasgon J., 2017, Gene drive for mosquito control: where did it come from and where are we headed, International Journal of Environmental Research and Public Health, 14(9): 1006. https://doi.org/10.3390/ijerph14091006 McLean K., and Jacobs-Lorena M., 2016, Genetic control of malaria mosquitoes, Trends in Parasitology, 32: 174-176. https://doi.org/10.1016/j.pt.2016.01.002 Miles A., Harding N., Bottà G., Clarkson C., Antão T., Kozak K., Schrider D., Kern A., Redmond S., Sharakhov I., Pearson R., Bergey C., Fontaine M., Donnelly M., Lawniczak M., Kwiatkowski D., Fo M., Donnelly M., Ayala D., Besansky N., Burt A., Caputo B., Torre A., Godfray H., Hahn M., Kwiatkowski D., Lawniczak M., Midega J., Neafsey D., Loughlin S., Pinto J., Riehle M., Vernick K., Weetman D., Wilding C., White B., Pinto A., Troco A., Burt A., Diabaté A., Besansky C., Costantini C., Rohatgi K., Pinto N., Elissa N., Vernick B., Coulibaly B., Dinis J., Dinis J., Bejon J., Mbogo C., Bejon P., Donnelly C., Mawejje H., Donnelly D., Rowlan J., Stalker J., Rockett K., Drury E., Mead D., Jeffreys A., Hubbart C., Rowlands K., Isaacs A., Jyothi D., Malangone C., Kluczyski P., Vauterin P., Jeffery B., Wright I., Hart L., Kluczynski K., Kwiatkow V., Cornelius V., MacInnis B., Henrichs C., and Giacomantonio R., 2017, Genetic diversity of the african malaria vector anopheles gambiae, Nature, 552: 96-100. https://doi.org/10.1038/nature24995 Nazareth T., Craveiro I., Moutinho A., Seixas G., Gonçalves C., Gonçalves L., Teodósio R., and Sousa C., 2020, What happens when we modify mosquitoes for disease prevention, a systematic review, Emerging Microbes & Infections, 9: 348-365. https://doi.org/10.1080/22221751.2020.1722035 Pagendam D., Trewin B., Johnson B., Snoad N., Ritchie S., Hoffmann A., Staunton K., Paton C., and Beebe N., 2020, Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination, BMC Biology, 18: 87. https://doi.org/10.1186/s12915-020-00887-0 Paixão E., Teixeira M., and Rodrigues L., 2017, Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases, BMJ Global Health, 3: 30. https://doi.org/10.1136/bmjgh-2017-000530 Resnik D., 2014, Ethical issues in field trials of genetically modified disease-resistant mosquitoes, Developing World Bioethics, 14: 37-46. https://doi.org/10.1111/dewb.12011 Riehle M., Srinivasan P., Moreira C., and Jacobs-Lorena M., 2003, Towards genetic manipulation of wild mosquito populations to combat malaria: advances and challenges, Journal of Experimental Biology, 206: 3809-3816. https://doi.org/10.1242/jeb.00609 Selvaraj P., Wenger E., Bridenbecker D., Windbichler N., Russell J., Gerardin J., Bever C., and Nikolov M., 2020, Vector genetics, insecticide resistance and gene drives: an agent-based modeling approach to evaluate malaria transmission and elimination, PLoS Computational Biology, 16: 21. https://doi.org/10.1101/2020.01.27.920421 Shragai T., Tesla B., Murdock C., and Harrington L., 2017, Zika and chikungunya: mosquito-borne viruses in a changing world, Annals of the New York Academy of Sciences, 13: 99. https://doi.org/10.1111/nyas.13306

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==