JMR_2024v14n2

Journal of Mosquito Research 2024, Vol.14, No.2, 87-99 http://emtoscipublisher.com/index.php/jmr 98 Kain M., Skinner E., Athni T., Ramírez A., ErinA M., and Hurk A., 2022a, Not all mosquitoes are created equal: incriminating mosquitoes as vectors of arboviruses, medRxiv, 8: 22272101. https://doi.org/10.1101/2022.03.08.22272101 Kain M., Skinner E., Athni T., Ramírez A., Mordecai E., and Hurk A., 2022b, Not all mosquitoes are created equal: a synthesis of vector competence experiments reinforces virus associations of australian mosquitoes, PLoS Neglected Tropical Diseases, 16: 68. https://doi.org/10.1371/journal.pntd.0010768 Koh, C., Frangeul L., Blanc H., Ngoagouni C., Boyer S., Dussart P., Grau N., Girod R., Duchemin J., and Saleh M., 2023, Ribosomal rna (rrna) sequences from 33 globally distributed mosquito species for improved metagenomics and species identification, ELife, 12: 76. https://doi.org/10.7554/eLife.82762 Kovach B., Reeves L., Domingo C., L'heureux S., Burger G., Schermerhorn S., and Riles M., 2022, Aedes pertinax, Anopheles perplexens, Culex declarator, and cx. interrogator: an update of mosquito species records for charlotte county, florida, Journal of the American Mosquito Control Association, 38(4): 241-249. https://doi.org/10.2987/22-7087 Li J., Dong Y., Sun Y., Lai Z., Zhao Y., Liu P., Gao Y., Chen X., and Gu J., 2019, A novel densovirus isolated from the asian tiger mosquito displays varied pathogenicity depending on its host species, Frontiers in Microbiology, 10: 54. https://doi.org/10.3389/fmicb.2019.01549 López-Rubio A., Suaza-Vasco J., Solari S., Gutiérez-Builes L., Porter C., and Uribe S., 2019, Intraspecific phylogeny of Anopheles (kerteszia) neivai howard, dyar & knab 1913, based on mitochondrial and nuclear ribosomal genes, Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 67: 183-190. https://doi.org/10.1016/j.meegid.2018.10.013 Lorenz C., Alves J., Foster P., Suesdek L., and Sallum M., 2021, Phylogeny and temporal diversification of mosquitoes (Diptera: Culicidae) with an emphasis on the neotropical fauna, Systematic Entomology, 46: 89. https://doi.org/10.1111/syen.12489 Makunin A., Korlević P., Park N., Goodwin S., Waterhouse R., Wyschetzki K., Jacob C., Davies R., Kwiatkowski D., Laurent B., Ayala D., and Lawniczak M., 2021, A targeted amplicon sequencing panel to simultaneously identify mosquito species and plasmodium presence across the entire Anopheles genus, Molecular Ecology Resources, 22: 28-44. https://doi.org/10.1111/1755-0998.13436 Munawar K., Saleh A., Afzal M., Qasim M., Khan K., Zafar M., and Khater E., 2020, Molecular characterization and phylogenetic analysis of anopheline (Anophelinae: Culicidae) mosquitoes of the oriental and afrotropical zoogeographic zones in saudi arabia, Acta Tropica, 10: 105494. https://doi.org/10.1016/j.actatropica.2020.105494 Muñoz-Gamba A., Laiton-Donato K., Perdomo-Balaguera E., Castro L., Usme-Ciro J., and Parra-Henao G., 2021, Molecular characterization of mosquitoes (Diptera: Culicidae) from the colombian rainforest, Revista Do Instituto De Medicina Tropical De São Paulo, 63: 24. https://doi.org/10.1590/S1678-9946202163024 Parry R., James M., and Asgari S., 2021, Uncovering the worldwide diversity and evolution of the virome of the mosquitoes Aedes aegypti and Aedes albopictus, Microorganisms, 9: 53. https://doi.org/10.3390/microorganisms9081653 Rückert C., and Ebel G., 2018, How do virus-mosquito interactions lead to viral emergence, Trends in Parasitology, 34(4): 310-321. https://doi.org/10.1016/j.pt.2017.12.004 Ruíz-Arrondo I., Hernández-Triana L., Nikolova N., Fooks A., and Oteo J., 2020, Integrated approaches in support of taxonomic identification of mosquitoes (Diptera: Culicidae) in vector surveillance in spain, Vector borne and zoonotic diseases, 10: 62. https://doi.org/10.1089/vbz.2020.2662 Shaikevich E., Bogacheva A., Rakova V., Ganushkina L., and Ilinsky Y., 2019, Wolbachia symbionts in mosquitoes: Intra and intersupergroup recombinations, horizontal transmission and evolution, Molecular Phylogenetics and Evolution, 134: 24-34. https://doi.org/10.1016/j.ympev.2019.01.020 Sherpa S., Rioux D., Pougnet-Lagarde C., and Després L., 2018, Genetic diversity and distribution differ between long-established and recently introduced populations in the invasive mosquito Aedes albopictus, Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 58: 145-156. https://doi.org/10.1016/j.meegid.2017.12.018 Souza A., Multini L., Marrelli M., and Wilke A., 2020, Wing geometric morphometrics for identification of mosquito species (Diptera: Culicidae) of neglected epidemiological importance, Acta Tropica, 211: 105593. https://doi.org/10.1016/j.actatropica.2020.105593 Swain S., Makunin A., Dóra A., and Barik T., 2019, SNP barcoding based on decision tree algorithm: a new tool for identification of mosquito species with special reference to Anopheles, Acta Tropica, 199: 105152. https://doi.org/10.1016/j.actatropica.2019.105152 Trzebny A., Słodkowicz-Kowalska A., Becnel J., Sanscrainte N., and Dabert M., 2020, A new method of metabarcoding microsporidia and their hosts reveals high levels of microsporidian infections in mosquitoes (culicidae), Molecular Ecology Resources, 20: 1486-1504. https://doi.org/10.1111/1755-0998.13205

RkJQdWJsaXNoZXIy MjQ4ODYzNA==