JMR_2024v14n2

Journal of Mosquito Research 2024, Vol.14, No.2, 76-86 http://emtoscipublisher.com/index.php/jmr 85 Vector Management: Combining genomics-based approaches with traditional vector control methods, such as insecticides and environmental management, will create more robust and sustainable strategies for reducing mosquito-borne disease transmission. By addressing these research areas, scientists and policymakers can develop more effective and ethical approaches to controlling mosquito populations and mitigating the spread of mosquito-borne diseases. Acknowledgments The author extend our sincere thanks to two anonymous peer reviewers for their invaluable feedback on the initial draft of this paper, whose critical evaluations and constructive suggestions have greatly contributed to the improvement of our manuscript. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Adolfi A., Gantz V., Jasinskiene N., Lee H., Hwang K., Terradas G., Bulger E., Ramaiah A., Bennett J., Emerson J., Marshall J., Bier E., and James A., 2020, Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi, Nature Communications, 11(1): 5553. https://doi.org/10.1038/s41467-020-19426-0 Adolfi A., Lynd A., Lycett G., and James A., 2021, Site-directed φC31-mediated integration and cassette exchange in anopheles vectors of malaria, Journal of visualized experiments : JoVE., 168: 146. https://doi.org/10.3791/62146 Baldon L., Mendonça S., Ferreira F., Rezende F., Amadou S., Leite T., Rocha M., Marques J., Moreira L., and Ferreira Á., 2022, AG129 mice as a comprehensive model for the experimental assessment of mosquito vector competence for arboviruses, Pathogens, 11: 10. https://doi.org/10.3390/pathogens11080879 Carballar-Lejarazú R., Ogaugwu C., Tushar T., Kelsey A., Pham T., Murphy J., Schmidt H., Lee Y., Lanzaro G., and James A., 2020, Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae, Proceedings of the National Academy of Sciences of the United States of America, 117: 22805-22814. https://doi.org/10.1073/pnas.2010214117 Cattel J., Haberkorn C., Laporte F., Gaude T., Cumer T., Renaud J., Sutherland I., Hertz J., Bonneville J., Arnaud V., Fustec B., Boyer S., Marcombe S., and David J., 2020, A genomic amplification affecting a carboxylesterase gene cluster confers organophosphate resistance in the mosquito Aedes aegypti: from genomic characterization to high‐throughput field detection, Evolutionary Applications, 14: 1009-1022. https://doi.org/10.1111/eva.13177 Chakraborty M., Ramaiah A., Adolfi A., Halas P., Kaduskar B., Ngo L., Jayaprasad S., Paul K., Whadgar S., Srinivasan S., Subramani S., Bier E., James A., and Emerson, J., 2022, Author correction: hidden genomic features of an invasive malaria vector, anopheles stephensi, revealed by a chromosome-level genome assembly, BMC Biology, 50: 269-281. https://doi.org/10.1186/s12915-022-01314-2 Claudio-Piedras F., Recio-Tótoro B., Condé R., Hernández-Tablas J., Hurtado-Sil G., and Lanz-Mendoza H., 2020, DNA methylation in anopheles albimanus modulates the midgut immune response against plasmodium berghei, Frontiers in Immunology, 10: 1-15. https://doi.org/10.3389/fimmu.2019.03025 Collins E., Phelan J., Hubner M., Spadar A., Campos M., Ward D., Acford-Palmer H., Gomes A., Silva K., Gomez L., Clark T., and Campino S., 2022, A next generation targeted amplicon sequencing method to screen for insecticide resistance mutations in Aedes aegypti populations reveals a rdl mutation in mosquitoes from cabo verde, PLOS Neglected Tropical Diseases, 16: 10. https://doi.org/10.1371/journal.pntd.0010935 Honório N., Câmara D., Wiggins K., Eastmond B., and Alto B., 2020, High-throughput method for detection of arbovirus infection of saliva in mosquitoes Aedes aegypti and Ae. Albopictu, Viruses, 12: 343. https://doi.org/10.3390/v12111343 Kumar S., Haile M., Hoopmann M., Tran L., Michaels S., Morrone S., Ojo K., Reynolds L., Kusebauch U., Vaughan A., Moritz R., Kappe S., and Swearingen K., 2021, Plasmodium falciparum calcium-dependent protein kinase 4 is critical for male gametogenesis and transmission to the mosquito vector, mBio., 12(6): 248. https://doi.org/10.1128/mBio.02575-21 Ma Q., Srivastav S., Gamez S., Dayama G., Feitosa-Suntheimer F., Patterson E., Johnson R., Matson E., Gold A., Brackney D., Connor J., Colpitts T., Hughes G., Rasgon J., Nolan T., Akbari O., and Lau N., 2021, A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons, Genome Research, 31: 512-528. https://doi.org/10.1101/gr.265157.120

RkJQdWJsaXNoZXIy MjQ4ODYzNA==