JMR_2024v14n2

Journal of Mosquito Research 2024, Vol.14, No.2, 67-75 http://emtoscipublisher.com/index.php/jmr 75 Mo-on P., Panprivech S., and Kunathigan V., 2022, Investigation of low-cost media for Bacillus thuringiensis subspecies israelensis, E3S Web of Conferences, 355(1): 02017. https://doi.org/10.1051/e3sconf/202235502017 Melo L.F.A., Cabral A., Melo A.C.A., Melo-Santos M.A., Finkler L., and Luna-Finkler C., 2018, Cultivation of Bacillus thuringiensis var. israelensis H14 in bioreactor for biological control of Aedes aegypti larvae, Blucher Chemical Engineering Proceedings, 09: 2182-2185. https://doi.org/10.5151/cobeq2018-PT.0577 Nascimento N., Torres-Quintero M., Molina S., Pacheco S., Romão T., Pereira-Neves A., Soberón M., Bravo A., and Silva-Filha M., 2020, Functional Bacillus thuringiensis Cyt1Aa is necessary to synergize lysinibacillus sphaericus binary toxin (bin) against bin-resistant and refractory mosquito species, Applied and Environmental Microbiology, 86(7): e02770-19. https://doi.org/10.1128/AEM.02770-19 Poulin B., and Lefebvre, G., 2018, Perturbation and delayed recovery of the reed invertebrate assemblage in camargue marshes sprayed with Bacillus thuringiensis israelensis, Insect Science, 25(4): 542-548. https://doi.org/10.1111/1744-7917.12416 Rudd S.R., Miranda L.S., Curtis H.R., Bigot Y., Diaz-Mendoza M., Hice R., Nizet V., Park H.W., Blaha G., Federici B.A., and Bideshi D.K., 2023, The parasporal body of Bacillus thuringiensis subsp. israelensis: a unique phage capsid-associated prokaryotic insecticidal organelle, Biology (Basel), 12(11): 1421. https://doi.org/10.3390/biology12111421 Rahman A., Shefat S. H.T., and Chowdhury M.A., 2021, Effects of probiotic Bacillus on growth performance, immune response and disease resistance in aquaculture, Journal of Aquaculture Research and Development, 12(24): 634. https://doi.org/10.20944/preprints202103.0075.v1 Schneider S., Hendriksen N., Melin P., Lundström J., and Sundh I., 2015, Chromosome-directed PCR-Based detection and quantification of Bacillus cereus group members with focus on b, thuringiensis serovar israelensis active against nematoceran larvae, Applied and Environmental Microbiology, 81(14): 4894-4903. https://doi.org/10.1128/AEM.00671-15 Suwito S., Purnama S., and Kardiwinata P., 2021, Efficacy Bacillus thuringiensis var. israelensis serotype H-14 (Bti H-14) for control Aedes spp. density in Denpasar, Bali, International Journal Of Community Medicine And Public Health, 8(9): 4197-4203. https://doi.org/10.18203/2394-6040.ijcmph20213518 Stalinski R., Laporte F., Després L., and Tetreau G., 2016, Alkaline phosphatases are involved in the response of Aedes aegypti larvae to intoxication with Bacillus thuringiensis subsp, israelensis cry toxins, Environmental Microbiology, 18(3): 1022-1036. https://doi.org/10.1111/1462-2920.13186 Wilber D.H., Carey D.A., and Griffin M., 2018, Flatfish habitat use near north america's first offshore wind farm, Journal of Sea Research, 139: 24-32. https://doi.org/10.1016/j.seares.2018.06.004 Zghal R. Z., Kharrat M., Rebai A., Ben Khedher S., Jallouli W., Elleuch J., Ginibre C., Chandre F., and Tounsi S., 2018, Optimization of bio-insecticide production by tunisian Bacillus thuringiensis israelensis and its application in the field, Biological Control, 124: 46-52. https://doi.org/10.1016/j.biocontrol.2018.06.002 Zafar M., Razzaq A., Farooq M., Rehman A., Firdous H., Shakeel A., Mo H., and Ren M., 2020, Insect resistance management in Bacillus thuringiensis cotton by MGPS (multiple genes pyramiding and silencing), Journal of Cotton Research, 3: 1-13. https://doi.org/10.1186/s42397-020-00074-0

RkJQdWJsaXNoZXIy MjQ4ODYzNA==