JMR_2024v14n2

Journal of Mosquito Research 2024, Vol.14, No.2, 67-75 http://emtoscipublisher.com/index.php/jmr 74 functions from an ecosystem perspective (Rahman et al., 2021). In addition, considering that climate change may change the breeding habits and distribution of mosquitoes, studying the effectiveness and applicability of Bti under different climate conditions will help develop more effective mosquito control strategies. References Ângelo E., Vilas-Bôas G., Castro-Gómez R., and Lopes J., 2015, Utilisation of response surface methodology to optimise the culture medium for Bacillus thuringiensis subsp, israelensis, Biocontrol Science and Technology, 25(4): 414-428. https://doi.org/10.1080/09583157.2014.983457 Allgeier S., Frombold B., Mingo V., and Brühl C., 2018, European common frog rana temporaria (anura: ranidae) larvae show subcellular responses under field relevant Bacillus thuringiensis var. israelensis (Bti) exposure levels, Environmental Research, 162: 271-279. https://doi.org/10.1016/j.envres.2018.01.010 Allgeier S., Kästel A., and Brühl C., 2019, Adverse effects of mosquito control using Bacillus thuringiensis var. israelensis: reduced chironomid abundances in mesocosm, semi-field and field studies, Ecotoxicology and Environmental Safety, 169: 786-796. https://doi.org/10.1016/j.ecoenv.2018.11.050 Brühl C., Després L., Frör O., Patil C., Poulin B., and Tetreau G., 2020, Stefanie Allgeier,Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp, israelensis (Bti), Science of The Total Environment, 724: 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.137800 Bonin A., Paris M., Frérot H., Bianco E., Tetreau G., and Després L., 2015, The genetic architecture of a complex trait: resistance to multiple toxins produced by Bacillus thuringiensis israelensis in the dengue and yellow fever vector, the mosquito Aedes aegypti, Infect Genet Evol., 35: 204-13. https://doi.org/10.1016/j.meegid.2015.07.034 Becker N., Ludwig M., and Su T., 2018, Lack of resistance in Aedes vexans field populations after 36 years of Bacillus thuringiensis subsp, Israelensis applications in the upper rhine valley, germany, Journal of the American Mosquito Control Association, 34(2): 154-157. https://doi.org/10.2987/17-6694.1 Begum M., Uddin M.N., Rahman M.M., and Sultana N., 2015, The effect of three different feed types on growth performance of ceriodaphnia reticulata and bosmina sp, International Journal of Fisheries and Aquatic Studies, 3(1): 400-405. Derua Y., Kahindi S., Mosha F., Kweka E., Atieli H., Wang X., Zhou G., Lee M., Githeko A., and Yan G., 2018, Microbial larvicides for mosquito control: Impact of long lasting formulations of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on non‐target organisms in western kenya highlands, Ecology and Evolution, 8: 7563-7573. https://doi.org/10.1002/ece3.4250 Docile T., Figueiró R., Molina O., Gil-Azevedo L., and Nessimian J., 2021, Effects of Bacillus thuringiensis var. israelensis on the black fly communities (Diptera, Simuliidae) in tropical streams, Neotropical Entomology, 50: 269-281. https://doi.org/10.1007/s13744-020-00842-2 Gutierrez-Villagomez J., Patey G., To T., Lefebvre-Raine M., Lara-Jacobo L., Comte J., Klein B., and Langlois V., 2021, Frogs respond to commercial formulations of the biopesticide Bacillus thuringiensis var. israelensis, Especially Their Intestine Microbiota, Environ Sci Technol, 55(18): 12504-12516. https://doi.org/10.1021/acs.est.1c02322 Gopinathan C., and Shalini K., 2022, Cost effective production of Bacillus thuringiensis subsp. israelensis using chemically pre-treated rice straw, International Journal of Mosquito Research, 9(4):18-24. https://doi.org/10.22271/23487941.2022.v9.i4a.618 Iosr, J., Gopinathan C., and Romilly M., 2015, enhancement of biomass production of Bacillus Thuringeinsis Serovar. Israelensis by fed-batch fermentation, biology, Environmental Science, 1: 14-19. Ioannou C., Hadjichristodoulou C., Mouchtouri V., and Papadopoulos N., 2021, Effects of selection to diflubenzuron and Bacillus thuringiensis Var. Israelensis on the overwintering successes of Aedes albopictus (diptera: culicidae), Insects, 12(9): 822. https://doi.org/10.3390/insects12090822 Johnson B., Manby R., and Devine G., 2020, Performance of an aerially applied liquid Bacillus thuringiensis var. israelensis formulation (strain AM65-52) against mosquitoes in mixed saltmarsh-mangrove systems and fine-scale mapping of mangrove canopy cover using affordable drone-based imagery, Pest Management Science, 76(11): 3822-3831. https://doi.org/10.1002/ps.5933 Kästel A., Allgeier S., Brühl C.A., 2017, Decreasing Bacillus thuringiensis israelensis sensitivity of chironomus riparius larvae with age indicates potential environmental risk for mosquito control, Sci Rep., 7(1): 13565. https://doi.org/10.1038/s41598-017-14019-2 Mataba G.R., Clark N.W., Kweka E., Munishi L., Brendonck L., Vanschoenwinkel B., 2023, Interactive effects of dragonfly larvae and Bacillus thuringiensis var. israelensis on mosquito oviposition and survival, Ecosphere, 14(9): e4653. https://doi.org/10.1002/ecs2.4653 Muhammad I.W., Muhammad M., Asher R., and Shuaibu A., 2024, In vitro assessment of the larvicidal activity of Bacillus thuringiensis israelensis (vectobac 12as formulation) on anopheles mosquito larvae, cellular, Molecular and Biomedical Reports, 4(1): 9-16. https://doi.org/10.55705/cmbr.2023.391224.1115

RkJQdWJsaXNoZXIy MjQ4ODYzNA==