JMR_2024v14n1

Journal of Mosquito Research 2024, Vol.14, No.1, 49-60 http://emtoscipublisher.com/index.php/jmr 60 Environmentally Friendly Production and Release Technologies: Research and development of environmentally friendly production and release technologies for Rhodococcus erythropolis are needed to improve efficiency and reduce environmental impact. Integration with Biodiversity Protection: In the application of Rhodococcus erythropolis, exploring how to combine it with objectives for protecting and maintaining biodiversity can achieve ecosystem sustainability. In the future research and application prospects, Rhodococcus erythropolis as a biological control method still holds great potential, but it is necessary to consider the interactions among environment, ecosystems, and various control methods comprehensively. Through in-depth research, effective management strategies, and interdisciplinary collaboration, the potential of Rhodococcus erythropolis can be better utilized while ensuring the stability of ecosystems and the dual benefits to human health. References Alvarez H.M., Hernández M.A., Lanfranconi M.P., Silva R.A., and Villalba M.S., 2021, Rhodococcus as biofactories for microbial oil production, Molecules, 26(16): 4871. https://doi.org/10.3390/molecules26164871 Busch H., Hagedoorn P.L., and Hanefeld U., 2019, Rhodococcus as a versatile biocatalyst in organic synthesis, International journal of molecular sciences, 20(19): 4787. https://doi.org/10.3390/ijms20194787 Barratt B.I.P., Moran V.C., Bigler F., and van Lenteren J.C., 2018, The status of biological control and recommendations for improving uptake for the future, BioControl, 63: 155-167. https://doi.org/10.1007/s10526-017-9831-y Baker B.P., Green T.A., and Loker A.J., 2020, Biological control and integrated pest management in organic and conventional systems, Biological Control, 140: 104095. https://doi.org/10.1016/j.biocontrol.2019.104095 Cappelletti M., Presentato A., Piacenza E., Firrincieli A., Turner R.J., and Zannoni D., 2020, Biotechnology of Rhodococcus for the production of valuable compounds, Applied microbiology and biotechnology, 104: 8567-8594. https://doi.org/10.1007/s00253-020-10861-z Du C.H., 2023, Dynamics of a diffusion malaria model with vector-bias, Yingyong Shuxue He Lixue (Applied Mathematics and Mechanics), 44(3): 345-354. https://doi.org/10.21656/1000-0887.430095 Garrido S.D., Redondo N.M., Martín M., and Rivilla R., 2020, Comparative genomics of the Rhodococcus genus shows wide distribution of biodegradation traits, Microorganisms, 8(5): 774. https://doi.org/10.3390/microorganisms8050774 Krivoruchko A., Kuyukina M., and Ivshina I., 2019, Advanced Rhodococcus biocatalysts for environmental biotechnologies, Catalysts, 9(3): 236. https://doi.org/10.3390/catal9030236 Kuyukina M.S., and Ivshina I.B., 2019, Bioremediation of contaminated environments using Rhodococcus, Biology of Rhodococcus, 16: 231-270. https://doi.org/10.1007/978-3-030-11461-9_9 Liu Y.T., Wang W.T., Chen Z.Z., Xie W., and Zhang Y.J., 2023, Research progress on sex determination cascade in insects, Kunchong Xuebao (Acta Entomologica Sinica), 66(2): 245-254. Ma X.J., Bai J., Han J.X., Bai X.M., Han R., Li B. Y., Hao Y.R., and Zhang Z.Y., 2023, Flotation performance and separation mechanism of cassiterite with Rhodococcus opacus, Ciliao Yanjiu (Feed Research), 46(3): 82-87. Vázquez‐Boland J.A., and Meijer W.G., 2019, The pathogenic actinobacteriumRhodococcus equi: what's in a name?, Molecular microbiology, 112(1): 1-15. https://doi.org/10.1111/mmi.14267 Wang F.L., Zhang D.C., Wu X.F., Deng S.S., and Yuan X.Y., 2023, Affinity analysis of anionic polyacrylamide degraded by amidase from Rhodococcus sp.N-771, Huanjing Huaxue (Environmental Chemistry), 42(1): 319-326. Wang G.N., Ma X.J., Cao C.H., Li Y.J., Yang X.T., Ma L.N., Zhou T.T., Du X.J., Chen L.F., Zhang Z.H., and Song L.L., 2023, Bioinformatics analysis of MLDS protein of Rhodococcus, Zhongguo Ciliao (China Feed), 15: 52-57. Wang Y., Chen H., and Xu M.D., and Lü Y.K., 2023, Pyridine degradation characteristics of Rhodococcus sp. LV4 under high salinity conditions, Shengwu Gongcheng Xuebao (Chinese Journal of Biotechnology), 39(3): 1202-1216. Xiong J.F., Tan L.F., Yang R., Zhang W., and Yao X., 2022, Difference and correlation analysis of three surveillance methods on aedes population density, Jishengchong yu Yixue Kunchong Xuebao (Acta Parasitologica et Medica Entomologica Sinica), 29(4): 237-242. Yu Q., Liu J.Y., and Cheng G., 2023, Research progress in mosquito-borne flaviviruses transmission and the development of vaccines and drugs, Hecheng Shengwuxue (Synthetic Biology Journal), 4(2): 347-372. Zhou P.C., Liu C., Rong P.F., Liu Y., Huang F., and Liu Z.G., 2023, Rhodococcus erythropolis infection:one cases report and literature review, Zhongguo Ganran Kongzhi Zazhi (Chinese Journal of Infection Control), 22(9): 1065-1071.

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==