JMR_2024v14n1

Journal of Mosquito Research 2024, Vol.14, No.1, 10-17 http://emtoscipublisher.com/index.php/jmr 10 Research Report Open Access The Impact of Releasing Aedes aegypti Mosquitoes Edited by CRISPR in the Wild on Local Ecosystems Jinni Wu, Tianhui Li Insect Breeding and Biotesting Laboratory, Cuixi Academy of Biotechnology, Zhuji, 311800, China Corresponding author email: 2984078657@qq.com Journal of Mosquito Research, 2024, Vol.14, No.1 doi: 10.5376/jmr.2024.14.0002 Received: 03 Nov., 2023 Accepted: 13 Dec., 2023 Published: 03 Jan., 2024 Copyright © 2024 Wu and Li, This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Preferred citation for this article: Wu J.N., and Li T.H., 2024, The impact of releasing Aedes aegypti mosquitoes edited by CRISPR in the wild on local ecosystems, Journal of Mosquito Research, 14(1): 10-17 (doi: 10.5376/jmr.2024.14.0002) Abstract The aim of this study was to investigate the potential impacts of releasing CRISPR-edited Aedes aegypti mosquitoes in the wild on local ecosystems. Aedes aegypti mosquitoes, as an important vector mosquito species, play a pivotal role in the transmission of infectious diseases such as yellow fever and dengue fever. With the rise of CRISPR editing technology, there is an opportunity to reduce the potential of mosquitoes to transmit diseases by precisely editing their genes. The release of this technology in the wild could trigger a range of ecological issues, including ecological niche changes, impacts on food chains and ecological balance, and possible alterations to the adaptive and competitive relationships of non-target species. By exploring these potential impacts in depth, this study aims to provide a comprehensive understanding of the ecological risks and opportunities of CRISPR editing technology inAedes aegypti mosquitoes, and to provide a reference for its rational and prudent field application. Keywords Aedes aegypti mosquitoes; CRISPR editing technology; Ecosystem impacts; Ecological balance; Vector control Mosquitoes, as one of the bloodsucking insects, have long been one of the main vectors of many infectious diseases. Among them, the Aedes aegypti mosquito is a particularly worrisome vector mosquito species due to its high adaptability to humans. This mosquito is a vector of major infectious diseases such as yellow fever and dengue fever, posing a serious threat to public health security on a global scale. Its rapid reproduction and widespread distribution have led to the rapid spread of infectious diseases in tropical and subtropical regions, affecting the lives and health of millions of people. With the continuous progress of gene editing technology, the rise of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) editing technology has become an important tool for altering biological genomes (Zhang et al., 2023). CRISPR technology has been widely favored for its high efficiency and precise gene modification characteristics CRISPR technology is widely favored for its efficient and precise gene modification properties. By directing proteins to cut the DNA strands of target genes, CRISPR technology enables scientists to edit biological genes in a more delicate way, providing new possibilities for solving major problems such as infectious diseases. It is critical to intensify in-depth research on the application of CRISPR editing technology in the Aedes aegypti mosquito and to explore in greater depth the important impact this technology may have on its ability to transmit disease. By precisely editing the mosquito's genes, researchers are expected to modulate its immune system, reproductive capacity, and other key traits, thereby reducing its potential to act as a vector for disease transmission. This will contribute to a comprehensive understanding of the potential value of CRISPR technology in infectious disease prevention and control. The aim of this study is to delve into the possible ecosystem impacts of releasing CRISPR-edited Aedes aegypti mosquitoes. This includes, but is not limited to, changes in the mosquito's role in the ecological niche, disruption and restoration of the ecological balance, as well as possible impacts on non-target species' adaptations and competitive relationships (Wei et al., 2018). By considering these aspects together, a more comprehensive understanding of the ecological issues that may be triggered by gene-edited mosquitoes in actual releases can be achieved, leading to a more cautious and informed application of the technology.

RkJQdWJsaXNoZXIy MjQ4ODY0NQ==