IJMEC_2025v15n1

International Journal of Molecular Ecology and Conservation, 2025, Vol.15, No.1, 9-18 http://ecoevopublisher.com/index.php/ijmec 18 Numba S., 2023, Genetic diversity and its association with Phytophthora palmivora resistance in Durian (Durio zibethinus) using RAPD markers, Biodiversitas Journal of Biological Diversity, 24(8): 4542-4548. https://doi.org/10.13057/biodiv/d240835 Pongpisutta R., Keawmanee P., Sanguansub S., Dokchan P., Bincader S., Phuntumart V., and Rattanakreetakul C., 2023, Comprehensive investigation of die-back disease caused by fusarium in durian, Plants, 12(17): 3045. https://doi.org/10.3390/plants12173045 Prakoso C., and Retnoningsih A., 2021, Molecular based genetic diversity of brongkol's superior durian germplasm of semarang, indonesia, Biodiversitas Journal of Biological Diversity, 22: 12. https://doi.org/10.13057/biodiv/d221211 Ratisupakorn S., Lorn S., Dada N., Ngampongsai A., Chaivisit P., Ritthison W., and Tainchum K., 2021, Aedes albopictus (diptera: culicidae) susceptibility status to agrochemical insecticides used in durian planting systems in Southern Thailand, Journal of Medical Entomology, 58(3): 1270-1279. https://doi.org/10.1093/jme/tjaa268 Sangpong L., Khaksar G., Pinsorn P., Oikawa A., Sasaki R., Erban A., Watanabe M., Wangpaiboon K., Tohge T., Kopka J., Hoefgen R., Saito K., and Sirikantaramas S., 2021, Assessing dynamic changes of taste-related primary metabolism during ripening of durian pulp using metabolomic and transcriptomic analyses, Frontiers in Plant Science, 12: 687799. https://doi.org/10.3389/fpls.2021.687799 Scortichini M., 2022, Sustainable management of diseases in horticulture: conventional and new options, Horticulturae, 8(6): 517. https://doi.org/10.3390/horticulturae8060517 Siew G., Ng W., Salleh M., Tan S., Ky H., Alitheen N., Tan S., and Yeap S., 2018a, Assessment of the genetic variation of Malaysian durian varieties using inter-simple sequence repeat markers and chloroplast DNA sequences, Pertanika Journal of Tropical Agricultural Science, 41: 1. Siew G., Ng W., Tan S., Alitheen N., Tan S., and Yeap S., 2018b, Genetic variation and DNA fingerprinting of durian types in Malaysia using simple sequence repeat (SSR) markers, PeerJ, 6: e4266. https://doi.org/10.7717/peerj.4266 Songnuan W., Pichakum A., Traiperm P., Rungjangsuwan E., Siriwattanakul U., Leeratsuwan N., Chareonsap P., Kulpradit K., Somsri S., and Swangpol S., 2019, Diversity of durian (Durio zibethinus L.) from Nonthaburi, Thailand based on morpho-palatability characteristics and simple sequence repeat markers, Agriculture and Natural Resources, 53(3): 218-227. Tan X., Misran A., Cheong K., Daim L., Ding P., and Dek M., 2020, Postharvest quality indices of different durian clones at ripening stage and their volatile organic compounds, Scientia Horticulturae, 264: 109169. https://doi.org/10.1016/j.scienta.2019.109169 Teh B., Lim K., Yong C., Ng C., Rao S., Rajasegaran V., Lim W., Ong C., Chan K., Cheng V., Soh P., Swarup S., Rozen S., Nagarajan N., and Tan P., 2017, The draft genome of tropical fruit durian (Durio zibethinus), Nature Genetics, 49(11): 1633-1641. https://doi.org/10.1038/ng.3972 Xiao Z., Niu M., and Niu Y., 2022, Comparative study on volatile compounds and taste components of different durian cultivars based on GC-MS, UHPLC, HPAEC-PAD, e-tongue and e-nose, Molecules, 27(4): 1264. https://doi.org/10.3390/molecules27041264 Zhang X.L., Zhu Q., Li J.Q., Lee D.S., and Chen L.J., 2024, Maximizing rice yields through heterosis: exploring the genetic basis and breeding strategies, Rice Genomics and Genetics, 15(4): 190-202. https://doi.org/10.5376/rgg.2024.15.0019 Zhou X., Wu H., Pan J., Chen H., Jin B., Yan Z., Xie L., and Rogers K., 2021, Geographical traceability of south-east Asian durian: a chemometric study using stable isotopes and elemental compositions, Journal of Food Composition and Analysis, 101: 103940. https://doi.org/10.1016/j.jfca.2021.103940

RkJQdWJsaXNoZXIy MjQ4ODYzNA==