International Journal of Molecular Ecology and Conservation, 2025, Vol.15, No.1, 1-8 http://ecoevopublisher.com/index.php/ijmec 7 Finally, the results of these genetic studies are not just to make pineapples sweeter and more delicious. They can also help us solve bigger problems, such as challenges such as climate change, water shortages and increased pests and diseases. We can use this knowledge to breed stronger and more adaptable varieties to new environments. For example, improving water use efficiency can make pineapples grow in arid areas; enhancing disease resistance can reduce the use of pesticides. Doing so will not only benefit agricultural production itself, but also promote more environmentally friendly and sustainable agricultural development. Acknowledgments Thanks to Mai Rudi and Liang Qixue for their support and assistance in literature search and data analysis. Funding This study was supported by Hainan Institute of Tropical Agricultural Resources Funding (No. H2025-02). Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Chen L., VanBuren R., Paris M., Zhou H., Zhang X., Wai C., Yan H., Chen S., Alonge M., Ramakrishnan S., Liao Z., Liu J., Lin J., Yue J., Fatima M., Lin Z., Zhang J., Huang L., Wang H., Hwa T., Kao S., Choi J., Sharma A., Song J., Wang L., Yim W., Cushman J., Paull R., Matsumoto T., Qin Y., Wu Q., Wang J., Yu Q., Wu J., Zhang S., Boches P., Tung C., Wang M., d'Eeckenbrugge C., Sanewski G., Purugganan M., Schatz M., Bennetzen J., Lexer C., and Ming R., 2019, The bracteatus pineapple genome and domestication of clonally propagated crops, Nature Genetics, 51(10): 1549-1558. https://doi.org/10.1038/s41588-019-0506-8 D’Eeckenbrugge G., Duval M., and Leal F., 2018, The pineapple success story: from domestication to pantropical diffusion, Genetics and Genomics of Pineapple, 2018: 1-25. https://doi.org/10.1007/978-3-030-00614-3_1 Dhurve L., Kumar K., Bhaskar J., Sobhana A., Francies R., and Mathew D., 2021, Wide variability among the ‘Mauritius’ somaclones demonstrates somaclonal variation as a promising improvement strategy in pineapple (Ananas comosus L.), Plant Cell, Tissue and Organ Culture (PCTOC), 145: 701-705. https://doi.org/10.1007/s11240-021-02022-5 Feng J., Zhang W., Chen C., Liang Y., Li T., Wu Y., Liu H., Wu J., Lin W., Li J., He Y., He J., and Luan A., 2024, The pineapple reference genome: Telomere-to-telomere assembly, manually curated annotation, and comparative analysis, Journal of Integrative Plant Biology, 66(10): 2208-2225. https://doi.org/10.1111/jipb.13748 Gaut B., Seymour D., Liu Q., and Zhou Y., 2018, Demography and its effects on genomic variation in crop domestication, Nature Plants, 4(8): 512-520. https://doi.org/10.1038/s41477-018-0210-1 Hayati R., and Kasiamdari R., 2024, Genetic diversity of indonesian pineapple (Ananas comosus (L.) Merr.) cultivars based on ISSR markers, Pertanika Journal of Tropical Agricultural Science, 47(4): 1087-1100. https://doi.org/10.47836/pjtas.47.4.02 Jia P., Liu S., Lin W., Yu H., Zhang X., Xiao X., Sun W., Lu X., and Wu Q., 2024, Authenticity identification of F1 hybrid offspring and analysis of genetic diversity in pineapple, Agronomy, 14(7): 1490. https://doi.org/10.3390/agronomy14071490 Ming R., VanBuren R., Wai C., Tang H., Schatz M., Bowers J., Lyons E., Wang M., Chen J., Biggers E., Zhang J., Huang L., Zhang L., Miao W., Zhang J., Ye Z., Miao C., Lin Z., Wang H., Zhou H., Yim W., Priest H., Zheng C., Woodhouse M., Edger P., Guyot R., Guo H., Guo H., Zheng G., Singh R., Sharma A., Min X., Zheng Y., Lee H., Gurtowski J., Sedlazeck F., Harkess A., McKain M., Liao Z., Fang J., Liu J., Zhang X., Zhang Q., Hu W., Qin Y., Wang K., Chen L., Shirley N., Lin Y., Liu L., Hernandez A., Wright C., Bulone V., Tuskan G., Heath K., Zee F., Moore P., Sunkar R., Leebens-Mack J., Mockler T., Bennetzen J., Freeling M., Sankoff D., Paterson A., Zhu X., Yang X., Smith J., Cushman J., Paull R., and Yu Q., 2015, The pineapple genome and the evolution of CAM photosynthesis, Nature Genetics, 47(12): 1435-1442. https://doi.org/10.1038/ng.3435 Sanewski G., 2018, The history of pineapple improvement, Genetics and Genomics of Pineapple, 2018: 87-96. https://doi.org/10.1007/978-3-030-00614-3_7 VanBuren R., 2018, Genomic relationships, diversity, and domestication of ananas taxa, Genetics and Genomics of Pineapple, 2018: 259-272. https://doi.org/10.1007/978-3-030-00614-3_18 Xie T., Chen C., Li C., Liu J., Liu C., and He Y., 2018, Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress, BMC Genomics, 19: 1-18. https://doi.org/10.1186/s12864-018-4880-x Xu H., Yu Q., Shi Y., Hua X., Tang H., Yang L., Ming R., and Zhang J., 2018, PGD: pineapple genomics database, Horticulture Research, 5: 66. https://doi.org/10.1038/s41438-018-0078-2
RkJQdWJsaXNoZXIy MjQ4ODYzNA==