International Journal of Molecular Evolution and Biodiversity, 2025, Vol.15, No.1, 40-50 http://ecoevopublisher.com/index.php/ijmeb 49 Pineapple fruit development can be viewed as a network output involving interactions among genes (transcription factors, enzymes) and metabolites (sugars, phytohormones, secondary metabolites). With the aid of computational modeling, one can predict how changes in specific parts of the system (e.g., upregulation of sugar transporter expression) influence the whole system (sugar levels, osmotic balance, and even cross-regulation of ethylene signaling) (Chomthong and Griffiths, 2023). Acknowledgments Sincerely thank the reviewers for their constructive criticisms and suggestions during the review process. Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Chen L.Y., VanBuren R., Paris M., Zhou H.Y., Zhang X.T., Wai C.M., Yan H.S., Chen S., Alonge M., Ramakrishnan S., Liao Z.Y., Liu J., Lin J.S., Yue J.J., Fatima M., Lin Z.C., Zhang J.S., Huang L.X., Wang H., Hwa T.Y., Kao S.M., Choi J.Y., Sharma A., Song J., Wang L.L., Yim W.C., Cushman J.C., Paull R.E., Matsumoto T., Qin Y., Wu Q.S., Wang J.P., Yu Q.Y., Wu J., Zhang S.L., Boches P., Tung C.W., Wang M.L., d’Eeckenbrugge G.C., Sanewski G.M., Purugganan M.D., Schatz M.C., Bennetzen J.L., Lexer C., and Ming R., 2019, The bracteatus pineapple genome and domestication of clonally propagated crops, Nature Genetics, 51(10): 1549-1558. https://doi.org/10.1038/s41588-019-0506-8 PMid:31570895 Chomthong M., and Griffiths H., 2023, Prospects and perspectives: inferring physiological and regulatory targets for CAM from molecular and modelling approaches, Annals of Botany, 132(4): 583-596. https://doi.org/10.1093/aob/mcad142 PMid:37742290 PMCid:PMC10799989 Feng L.J., Wang J.T., Mao M.Q., Yang W., Adje M.O., Xue Y.B., Zhou X.Z.X., Zhang H.L., Luo J.H., Tang R.M., Tan L., Lin D.P., Zhang X.P., Zang Y.Q., He Y.H., Chen C.M., Luan A.P., Lin W.Q., Xu W.T., Li X., Sun L.X., Jiang F.X., and Ma J., 2022, The highly continuous reference genome of a leaf-chimeric red pineapple (Ananas comosus var. bracteatus) provides insights into elaboration of leaf color, G3: Genes, Genomes, Genetics, 12(2): jkab452. https://doi.org/10.1093/g3journal/jkab452 PMid:35100332 PMCid:PMC8824783 Hu J., Chang X., Zhang Y., Yu X., Qin Y., Sun Y., and Zhang L., 2021, The pineapple MADS-box gene family and the evolution of early monocot flower, Scientific Reports, 11(1): 849. https://doi.org/10.1038/s41598-020-79163-8 PMid:33441609 PMCid:PMC7806820 Li Z., Wang J., Zhang X., Zhu G., Fu Y., Jing Y., Huang B., Wang X., Meng C., Yang Q., and Xu L., 2022, The genome of Aechmea fasciata provides insights into the evolution of tank epiphytic habits and ethylene-induced flowering, Communications Biology, 5(1): 920. https://doi.org/10.1038/s42003-022-03918-4 PMid:36071139 PMCid:PMC9452560 Lin J.T., Wu J.H., Zhang D., Cai X.K., Du L.M., Lu L., Liu C.J., Chen S.C., Yao Q.L., Xie S.Y., Xu X.W., Wang X.M., Liu R.Y., Qin Y., and Zheng P., 2024, The GRAS gene family and its roles in pineapple (Ananas comosus L.) developmental regulation and cold tolerance, BMC Plant Biology, 24(1): 1204. https://doi.org/10.1186/s12870-024-05913-9 PMid:39701971 PMCid:PMC11657692 Liu C., Zhang W., and He Y., 2022, The complete chloroplast genome of Ananas comosus var. erectifolius (LB Smith) Coppens & Leal, Mitochondrial Dna Part B, 7(3): 431-433. https://doi.org/10.1080/23802359.2022.2039081 PMid:35252578 PMCid:PMC8896190 Nashima K., Omine Y., Shirasawa K., Sato T., Yamada M., Shoda M., and Takeuchi M., 2024, Genome-wide association study of pineapple breeding population, Scientia Horticulturae, 338: 113757. https://doi.org/10.1016/j.scienta.2024.113757 Nashima K., Takeuchi M., Moromizato C., Omine Y., Shoda M., Urasaki N., Tarora K., Irei A., Shirasawa K., Yamada M., Kunihisa M., Nishitani C., and Yamamoto T., 2023, Identification of quantitative trait loci of fruit quality and color in pineapples, The Horticulture Journal, 92(4): 375-383. https://doi.org/10.2503/hortj.QH-063 Ouyang Y.W., Pan X.L., Wei Y.Z., Wang J., Xu X.X., He Y.K., Zhang X.H., Li Z.Q., and Zhang H.G., 2022, Genome-wide identification and characterization of the BBX gene family in pineapple reveals that candidate genes are involved in floral induction and flowering, Genomics, 114(4): 110397. https://doi.org/10.1016/j.ygeno.2022.110397 PMid:35675877
RkJQdWJsaXNoZXIy MjQ4ODYzNA==