International Journal of Molecular Evolution and Biodiversity, 2025, Vol.15, No.1, 29-39 http://ecoevopublisher.com/index.php/ijmeb 37 Conflict of Interest Disclosure The authors affirm that this research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest. References Berbel-Filho W., Pacheco G., Tatarenkov A., Lira M., De Leaniz G., López C., Lima S., and Consuegra S., 2022, Phylogenomics reveals extensive introgression and a case of mito-nuclear discordance in the killifish genus Kryptolebias, Molecular Phylogenetics and Evolution, 177: 107617. https://doi.org/10.1016/j.ympev.2022.107617 Campbell E., Gage E., Gage R., and Sperling F., 2020, Single nucleotide polymorphism- based species phylogeny of greater fritillary butterflies (Lepidoptera: Nymphalidae: Speyeria) demonstrates widespread mitonuclear discordance, Systematic Entomology, 45(2): 269-280. https://doi.org/10.1111/syen.12393 Chen L., Cao Y., Li G., Tian Y., Zeng T., Gu T., Xu W., Konoval O., and Lu L., 2023, Population structure and selection signatures of domestication in geese, Biology, 12(4): 532. https://doi.org/10.3390/biology12040532 Colom R., and O’Brien M., 2024, The genome sequence of the pink-footed goose, anser brachyrhynchus baillon, 1834, Wellcome Open Research, 9: 613. https://doi.org/10.12688/wellcomeopenres.23194.1 Corl A., and Ellegren H., 2013, Sampling strategies for species trees: the effects on phylogenetic inference of the number of genes, number of individuals, and whether loci are mitochondrial, sex-linked, or autosomal, Molecular Phylogenetics and Evolution, 67(2): 358-366. https://doi.org/10.1016/j.ympev.2013.02.002 Da Fonseca R., Johnson W., O’Brien S., Ramos M., and Antunes A., 2008, The adaptive evolution of the mammalian mitochondrial genome, BMC Genomics, 9: 119. https://doi.org/10.1186/1471-2164-9-119 DeRaad D., McCullough J., Decicco L., Hime P., Joseph L., Andersen M., and Moyle R., 2023, Mitonuclear discordance results from incomplete lineage sorting, with no detectable evidence for gene flow, in a rapid radiation of Todiramphus kingfishers, Molecular Ecology, 32(17): 4844-4862. https://doi.org/10.1111/mec.17080 Eda M., Itahashi Y., Kikuchi H., Sun G., Hsu K., Gakuhari T., Yoneda M., Jiang L., Yang G., and Nakamura S., 2022, Multiple lines of evidence of early goose domestication in a 7 000-y-old rice cultivation village in the lower Yangtze River, China, Proceedings of the National Academy of Sciences of the United States of America, 119(12): e2117064119. https://doi.org/10.1073/pnas.2117064119 Ely C., Wilson R., and Talbot S., 2017, Genetic structure among greater white-fronted goose populations of the Pacific Flyway, Ecology and Evolution, 7: 2956-2968. https://doi.org/10.1002/ece3.2934 Farah I., Islam M., Zinat K., Rahman A., and Bayzid M., 2021, Species tree estimation from gene trees by minimizing deep coalescence and maximizing quartet consistency: a comparative study and the presence of pseudo species tree terraces, Systematic Biology, 70(6): 1213-1231. https://doi.org/10.1093/sysbio/syab026 Firneno T., O’Neill J., Portik D., Emery A., Townsend J., and Fujita M., 2020, Finding complexity in complexes: assessing the causes of mitonuclear discordance in a problematic species complex of Mesoamerican toads, Molecular Ecology, 29: 3543-3559. https://doi.org/10.1111/mec.15496 Gao G., Zhao X., Li Q., He C., Zhao W., Liu S., Ding J., Ye W., Wang J., Chen Y., Wang H., Li J., Luo Y., Su J., Huang Y., Liu Z., Dai R., Shi Y., Meng H., and Wang Q., 2016, Genome and metagenome analyses reveal adaptive evolution of the host and interaction with the gut microbiota in the goose, Scientific Reports, 6: 32961. https://doi.org/10.1038/srep32961 Havird J., and McConie H., 2019, Sexually antagonistic mitonuclear coevolution in duplicate oxidative phosphorylation genes, Integrative and Comparative Biology, 59(4): 864-874. https://doi.org/10.1093/icb/icz021 Heikkinen M., Ruokonen M., Alexander M., Aspi J., Pyhäjärvi T., and Searle J., 2015, Relationship between wild greylag and European domestic geese based on mitochondrial DNA, Animal Genetics, 46(5): 485-497. https://doi.org/10.1111/age.12319 Heikkinen M., Ruokonen M., White T., Alexander M., Gündüz İ., Dobney K., Aspi J., Searle J., and Pyhäjärvi T., 2020, Long-term reciprocal gene flow in wild and domestic geese reveals complex domestication history, G3: Genes, Genomes, Genetics, 10(9): 3061-3070. https://doi.org/10.1534/g3.120.400886 Honka J., Heino M., Kvist L., Askeyev I., Shaymuratova D., Askeyev O., Askeyev A., Heikkinen M., Searle J., and Aspi J., 2018, Over a thousand years of evolutionary history of domestic geese from Russian archaeological sites, analysed using ancient DNA, Genes, 9(7): 367. https://doi.org/10.3390/genes9070367
RkJQdWJsaXNoZXIy MjQ4ODYzNA==