International Journal of Molecular Evolution and Biodiversity 2024, Vol.14, No.5, 241-251 http://ecoevopublisher.com/index.php/ijmeb 250 Eathington S., Crosbie T., Edwards M., Reiter R., and Bull J., 2007, Molecular markers in a commercial breeding program, Crop Science, 47. https://doi.org/10.2135/CROPSCI2007.04.0015IPBS García A., and Piñero D., 2017, Current approaches and methods in plant domestication studies, Boletin De La Sociedad Botanica De Mexico, 95: 345-362. https://doi.org/10.17129/BOTSCI.1209 Gaut B., Seymour D., Liu Q., and Zhou Y., 2018, Demography and its effects on genomic variation in crop domestication, Nature Plants, 4: 512-520. https://doi.org/10.1038/s41477-018-0210-1 Geleta M., and Ortiz R., 2016, Molecular and genomic tools provide insights on crop domestication and evolution, Advances in Agronomy, 135: 181-223. https://doi.org/10.1016/BS.AGRON.2015.09.005 Gibbons A., 2006, Ancient figs push back origin of plant cultivation, Science, 312: 1292. https://doi.org/10.1126/SCIENCE.312.5778.1292A Halpin C., 2005, Gene stacking in transgenic plants -- the challenge for 21st century plant biotechnology, Plant Biotechnology Journal, 3(2): 141-155. https://doi.org/10.1111/J.1467-7652.2004.00113.X Henry R., 2012, Next-generation sequencing for understanding and accelerating crop domestication, Briefings in Functional Genomics, 11(1): 51-56. https://doi.org/10.1093/bfgp/elr032 Hufford M., Xu X., Heerwaarden J., Pyhäjärvi T., Chia J., Cartwright R., Elshire R., Glaubitz J., Guill K., Kaeppler S., Lai J., Morrell P., Shannon L., Song C., Springer N., Swanson-Wagner R., Tiffin P., Wang J., Zhang G., Doebley J., McMullen M., Ware D., Buckler E., Yang S., and Ross-Ibarra J., 2012, Comparative population genomics of maize domestication and improvement, Nature Genetics, 44: 808-811. https://doi.org/10.1038/ng.2309 Irchad A., Ouaabou R., Aboutayeb R., Razouk R., Houmanat K., and Hssaini L., 2023, Lipidomic profiling reveals phenotypic diversity and nutritional benefits in Ficus carica L. (Fig.) seed cultivars, Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1229994 Jensen P., 2015, Adding ‘epi-’ to behaviour genetics: implications for animal domestication, Journal of Experimental Biology, 218: 32-40. https://doi.org/10.1242/jeb.106799 Julca I., Marcet-Houben M., Cruz F., Gómez-Garrido J., Gaut B., Díez C., Gut I., Alioto T., Vargas P., and Gabaldón T., 2020, Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.), BMC Biology, 18. https://doi.org/10.1186/s12915-020-00881-6 Kislev M., Hartmann A., and Bar‐Yosef O., 2006a, Early domesticated fig in the Jordan Valley, Science, 312: 1372-1374. https://doi.org/10.1126/science.1125910 Kislev M., Hartmann A., and Bar‐Yosef O., 2006b, Response to comment on “Early Domesticated Fig in the Jordan Valley”, Science, 314: 1683. https://doi.org/10.1126/science.1133748 Li C., Li Y., Zheng J., Guo Z., Mei X., Lei M., Ren Y., Zhang X., Zhang C., Yang C., Tang L., Ji Y., Yang R., Yu J., Xie X., and Kuang L., 2022, Trait analysis in domestic rabbits (Oryctolagus cuniculus f. domesticus) using SNP markers from genotyping-by-sequencing data, Animals: an Open Access Journal from MDPI, 12. https://doi.org/10.3390/ani12162052 Liu W., Chen L., Zhang S., Hu F., Wang Z., Lyu J., Wang B., Xiang H., Zhao R., Tian Z., Ge S., and Wang W., 2019, Decrease of gene expression diversity during domestication of animals and plants, BMC Evolutionary Biology, 19. https://doi.org/10.1186/s12862-018-1340-9 Makino T., Rubin C., Carneiro M., Axelsson E., Andersson L., and Webster M., 2018, Elevated proportions of deleterious genetic variation in domestic animals and plants, Genome Biology and Evolution, 10: 276 - 290. https://doi.org/10.1093/gbe/evy004 Morrell P., Buckler E., and Ross-Ibarra J., 2011, Crop genomics: advances and applications, Nature Reviews Genetics, 13: 85-96. https://doi.org/10.1038/nrg3097 Nora L., Westmann C., Guazzaroni M., Siddaiah C., Gupta V., and Silva-Rocha R., 2019, Recent advances in plasmid-based tools for establishing novel microbial chassis, Biotechnology Advances, 107433. https://doi.org/10.1016/j.biotechadv.2019.107433 Olsen K., and Gross B., 2008, Detecting multiple origins of domesticated crops, Proceedings of the National Academy of Sciences, 105: 13701-13702. https://doi.org/10.1073/pnas.0807439105 Østerberg J., Xiang W., Olsen L., Edenbrandt A., Vedel S., Christiansen A., Landes X., Andersen M., Pagh P., Sandøe P., Nielsen J., Christensen S., Thorsen B., Kappel K., Gamborg C., and Palmgren M., 2017, Accelerating the domestication of new crops: feasibility and approaches, Trends in Plant Science, 22(5): 373-384. https://doi.org/10.1016/j.tplants.2017.01.004 Ramesh P., Mallikarjuna G., Sameena S., Kumar A., Gurulakshmi K., Reddy B., Reddy P., and Sekhar A., 2020, Advancements in molecular marker technologies and their applications in diversity studies, Journal of Biosciences, 45: 1-15. https://doi.org/10.1007/s12038-020-00089-4 Riley L., and Guss A., 2021, Approaches to genetic tool development for rapid domestication of non-model microorganisms, Biotechnology for Biofuels, 14. https://doi.org/10.1186/s13068-020-01872-z
RkJQdWJsaXNoZXIy MjQ4ODYzNA==