IJMEB_2024v15n5

International Journal of Molecular Evolution and Biodiversity 2024, Vol.14, No.5, 219-228 http://ecoevopublisher.com/index.php/ijmeb 227 Bayly M., Rigault P., Spokevicius A., Ladiges P., Ades P., Anderson C., Bossinger G., Merchant A., Udovicic F., Woodrow I., and Tibbits J., 2013, Chloroplast genome analysis of Australian eucalypts-Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae), Molecular Phylogenetics and Evolution, 69(3): 704-716. https://doi.org/10.1016/j.ympev.2013.07.006 Bernabeu M., and Rosselló J., 2021, Molecular evolution of rbcL in Orthotrichales (Bryophyta): site variation, adaptive evolution, and coevolutionary patterns of amino acid replacements, Journal of Molecular Evolution, 89: 225-237. https://doi.org/10.1007/s00239-021-09998-w Calderon R., and Strand Å., 2021, How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes, Current Opinion in Plant Biology, 63: 102093. https://doi.org/10.1016/j.pbi.2021.102093 Deng P., Wang Y., Hu F., Yu H., Liang Y., Zhang H., Wang T., Zhou Y., and Li Z., 2022, Phenotypic trait subdivision provides new sight into the directional improvement of Eucommia ulmoides oliver, Frontiers in Plant Science, 13: 832812. https://doi.org/10.3389/fpls.2022.832821 Du Q., Wu Z., Liu P., Qing J., He F., Du L., Sun Z., Zhu L., Zheng H., Sun Z., Yang L., Wang L., and Du H., 2023, The chromosome-level genome of Eucommia ulmoides provides insights into sex differentiation and α-linolenic acid biosynthesis, Frontiers in Plant Science, 14: 1118363. https://doi.org/10.3389/fpls.2023.1118363 Fučíková K., Lewis P., and Lewis L., 2016, Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta) reveal complex patterns of sequence evolution, Molecular Phylogenetics and Evolution, 98: 176-183. https://doi.org/10.1016/j.ympev.2016.01.022 Ku C., Nelson-Sathi S., Roettger M., Sousa F., Lockhart P., Bryant D., Hazkani-Covo E., McInerney J., Landan G., and Martin W., 2015, Endosymbiotic origin and differential loss of eukaryotic genes, Nature, 524: 427-432. https://doi.org/10.1038/nature14963 Li Y., Dong Y., Liu Y., Yu X., Yang M., and Huang Y., 2021, Comparative analyses of Euonymus chloroplast genomes: genetic structure, screening for loci with suitable polymorphism, positive selection genes, and phylogenetic relationships within Celastrineae, Frontiers in plant science, 11: 593984. https://doi.org/10.3389/fpls.2020.593984 Li Y., Wei H., Yang J., Du K., Li J., Zhang Y., Qiu T., Liu Z., Ren Y., Song L., and Kang X., 2020, High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis, Horticulture Research, 7: 183. https://doi.org/10.1038/s41438-020-00406-w Liu C., Wang L., Lu W., Zhong J., Du H., Liu P., Du Q., Du L., and Qing J., 2022, Construction of SNP-based high-density genetic map using genotyping by sequencing (GBS) and QTL analysis of growth traits in Eucommia ulmoides oliv., Forests, 13(9): 1479. https://doi.org/10.3390/f13091479 Liu F., Chen N., Wang H., Li J., Wang J., and Qu F., 2023, Novel insights into chloroplast genome evolution in the green macroalgal genus Ulva (Ulvophyceae, Chlorophyta), Frontiers in Plant Science, 14: 1126175. https://doi.org/10.3389/fpls.2023.1126175 Qing J., Du Q., Meng Y., Liu P., Du H., and Wang L., 2021, Genome-wide identification and expression pattern analysis of the ribonuclease T2 family in Eucommia ulmoides, Scientific Reports, 11: 6900. https://doi.org/10.1038/s41598-021-86337-5 Sugimoto H., Hirano M., Tanaka H., Tanaka T., Kitagawa-Yogo R., Muramoto N., and Mitsukawa N., 2020, Plastid-targeted forms of restriction endonucleases enhance the plastid genome rearrangement rate and trigger the reorganization of its genomic architecture, The Plant Journal, 102(5): 1042-1057. https://doi.org/10.1111/tpj.14687 Turmel M., Gagnon M., O’kelly C., Otis C., and Lemieux C., 2009, The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids, Molecular Biology and Evolution, 26 (3): 631-648. https://doi.org/10.1093/molbev/msn285 Turmel M., Otis C., and Lemieux C., 2017, Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae, Scientific Reports, 7: 994. https://doi.org/10.1038/s41598-017-01144-1 Turudić A., Liber Z., Grdiša M., Jakše J., Varga F., and Šatović Z., 2022, Chloroplast genome annotation tools: prolegomena to the identification of inverted repeats, International Journal of Molecular Sciences, 23(18): 10804. https://doi.org/10.3390/ijms231810804 Tyszka A., Bretz E., Robertson H., Woodcock-Girard M., Ramanauskas K., Larson D., Stull G., and Walker J., 2023, Characterizing conflict and congruence of molecular evolution across organellar genome sequences for phylogenetics in land plants, Frontiers in Plant Science, 14: 1125107. https://doi.org/10.3389/fpls.2023.1125107 Vargas O., Ortiz E., and Simpson B., 2017, Conflicting phylogenomic signals reveal a pattern of reticulate evolution in a recent high-Andean diversification (Asteraceae: Astereae: Diplostephium), New phytologist, 214 (4): 1736-1750. https://doi.org/10.1111/nph.14530 Wang C., Gong H., Feng M., and Tian C., 2023, Phenotypic variation in leaf, fruit and seed traits in natural populations of Eucommia ulmoides, a relict Chinese endemic tree, Forests, 14(3): 462. https://doi.org/10.3390/f14030462

RkJQdWJsaXNoZXIy MjQ4ODYzNA==