IJMEB_2024v14n4

International Journal of Molecular Evolution and Biodiversity 2024, Vol.14, No.4, 147-161 http://ecoevopublisher.com/index.php/ijmeb 147 Review Article Open Access Systematic Evolution and Radiation of Vertebrates: Reconstructing Phylogenetic Relationships and Unveiling Speciation Mechanisms Zhen Liu, Wenfang Wang Institute of Life Sciences, Jiyang Colloge of Zhejiang A&F University, Zhuji, 311800, Zhejiang, China Corresponding author: wenfangwang@jicat.org International Journal of Molecular Evolution and Biodiversity, 2024, Vol.14, No.4 doi: 10.5376/ijmeb.2024.14.0017 Received: 04 Jun., 2024 Accepted: 11 Jul., 2024 Published: 18 Jul., 2024 Copyright © 2024 Liu and Wang, This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Preferred citation for this article: Liu Z., and Wang W.F., 2024, Systematic evolution and radiation of vertebrates: reconstructing phylogenetic relationships and unveiling speciation mechanisms, International Journal of Molecular Evolution and Biodiversity, 14(4): 147-161 (doi: 10.5376/ijmeb.2024.14.0017) Abstract This study explores the evolutionary history and radiation of vertebrates, focusing on reconstructing phylogenetic relationships and unveiling the mechanisms of speciation. By integrating molecular and morphological data, the review elucidates the complexity of vertebrate lineages and the dynamic processes driving speciation, including allopatric, sympatric, peripatric, and parapatric mechanisms. Key findings highlight the significance of adaptive radiation and genetic studies in understanding how species diversify through ecological opportunities and evolutionary innovations. Case studies provide unique insights into the patterns and processes of vertebrate evolution. These studies emphasize the importance of phylogenetic knowledge in biodiversity conservation and the preservation of evolutionary potential. Emerging technologies and interdisciplinary approaches are identified as crucial for advancing future research in vertebrate evolution. This study contributes to the broader understanding of biodiversity and evolutionary processes, providing a foundation for future research and conservation efforts. Keywords Vertebrates; Phylogenetics; Speciation; Adaptive radiation; Biodiversity conservation 1 Introduction The study of vertebrate evolution is crucial for understanding the complex history of life on Earth. Vertebrates, a diverse group of animals with backbones, have undergone significant evolutionary changes over millions of years, leading to the vast array of species we see today. The importance of studying vertebrate evolution lies in its ability to shed light on the mechanisms that drive biodiversity and adaptation. By examining the evolutionary trajectories of vertebrates, researchers can gain insights into the processes that generate and maintain biological diversity (Streelman and Danley, 2003; Donoghue and Keating, 2014). Vertebrates are divided into several major lineages, including fish, amphibians, reptiles, birds, and mammals. Each of these groups has experienced unique evolutionary paths, resulting in a wide range of morphological, ecological, and behavioral adaptations. For instance, the transition from jawless to jawed vertebrates marked a significant evolutionary milestone, characterized by genomic, embryologic, and phenotypic changes (Donoghue and Keating, 2014). Additionally, the study of vertebrate systematics has revealed the intricate relationships among different species, highlighting the role of both natural and sexual selection in shaping vertebrate diversity (Streelman and Danley, 2003; Cooney and Thomas, 2020). This study aim to reconstruct the phylogenetic relationships among vertebrates. Understanding these relationships is essential for elucidating the evolutionary history and connections between different vertebrate species. Recent advances in molecular phylogenetics and phylogenomics have provided powerful tools for resolving these relationships, even among groups with complex evolutionary histories. Meanwhile, the study seek to unveil the mechanisms of speciation and radiation that have contributed to the diversification of vertebrates. Speciation, the process by which new species arise, is often linked to morphological and ecological changes. By examining the rates of speciation and morphological evolution across different vertebrate clades, we can identify patterns and drivers of diversification. Additionally, understanding the role of genetic factors, such as gene regulation and genome duplication, can provide insights into the molecular mechanisms underlying adaptive evolution.

RkJQdWJsaXNoZXIy MjQ4ODYzNA==